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Abstract 

The interpretation of the q-deformed 1-D quantum harmonic oscillator is investigated for two 

definitions of q-deformation. This investigation is achieved by using Zaslavskii’s method to 

obtain the Heisenberg equations of motion (quantum Liouville equations) in the undeformed 

phase space. These quantum Liouville equations exhibit a non-commutative geometry produce 

from the existence of the dilatation operator which is inherent in the q-deformation process.  

The classical limits of these equations are obtained by applying a special classical limiting 

condition to produce the classical Liouville equations of the q-deformed oscillator. These 

classical Liouville equations are solved by using the method of characteristics in order to obtain 

the classical probability distribution functions for this system. The 2-D and 3-D behaviors of 

these functions were then investigated using a computer visualization method. The results of 

the mathematical derivations together with the computer visualization method show that the 

classical limit of the quantum Liouville equations for the q-deformed 1-D quantum harmonic 

oscillator are statistical in nature where the nonlinearity parameter for the q-deformed oscillator 

is connected with . This result conforms to that obtained by Ghosh et al. for the undeformed 

1-D quantum harmonic oscillator.  

The obtained classical probability distribution functions exhibit whorl shapes that evolve with 

time in phase space that are similar to the shapes obtained for the 1-D classical q-deformed 

oscillator. These whorl shapes in phase space are similar to those introduced by Milburn for 

the 1-D classical anharmonic oscillator. This similarity results from the fact that the 

anharmonicity itself represents a kind of deformation with a frequency that is a function of 

amplitude.     

Keywords: quantum q-deformed oscillator, classical limit, classical Liouville equation, 

method of characteristics, classical probability distribution function. 

 

Introduction 

There have been many attempts performed 

to reveal the meaning and the interpretation 

of q-deformation [1-9]. In this context, the                 

q-deformed quantum harmonic oscillator 

was used as a good model example. In 

1991, Buzek [1] evaluated the time-

evolution of the mean values of the                

q-position and the q-momentum for the       

q-oscillator in order to obtain the periodic 

classical behavior. In this treatment, the 

non- periodic behavior of this oscillator was 

interpreted as the interaction of the 

quantum oscillator with another system. 

Shabanov [2] studied also the meaning and 

the interpretation of the same oscillator 

used by Buzek [1] but in a different manner. 

In 1992, Shabanov [2] obtained the                

q-deformed variables by using the standard 

Heisenberg commutation relations, and 

defined the q-deformation parameter, q , to 

be a function of the Planck constant and 

some dimensional parameter, q where 

2
qq e

−
=

ω
. To interpret this oscillator, 

he applied the classical limit 0→ , 1q →  

for the canonical variables to arrive at the 

Journal of Al-Nahrain University                 Vol. 19. September.2016 pp 53-69           Science 



2 
 

classical theory. The second attempt by 

Shabanov [3] was more rigorous than the 

first one, where he introduced in 1993 the 

path integral in his approach. Hence, the     

classical theory was obtained by applying 

the semi classical approximation. It turns 

out that the q-oscillator can be interpreted 

as a particle with a friction force acting on 

the particle, and this force is proportional to 

the particle velocity. Man’ko et al. [4] 

studied both the quantum and classical         

q-oscillator via the Dirac dequantization 

method to construct the classical                     

q-oscillator from the corresponding 

quantum q-oscillator and interpreted the     

q-oscillator as a classical non-linear 

oscillator with a special type of 

nonlinearity, where the frequency of the 

oscillator is a function of the energy which 

is a constant of the motion. Man’ko has also 

dealt with the f-oscillator in the same   

context in 1997 and 1998 [5, 6].  

Furthermore Gruver [7] studied the 

dynamical properties of the q-deformed 

oscillator and found that this oscillator can 

be interpreted as an anharmonic oscillator 

with a q-deformation parameter which can 

be interpreted as a measure of 

anharmonicity. Another attempt to interpret 

the q-deformation can be found in the work 

of Batouli and El Baz [8] who studied the 

q-deformation for the quantum harmonic 

oscillator in a way similar to that of Buzek 

[1], but with some modifications. These 

modifications led to a different 

interpretation for the q-deformation where 

the q-deformed quantum harmonic 

oscillator can be considered as the quantum 

version of a classical forced oscillator with 

a modified q-dependent frequency, such 

that in the limit 1q → , the driving force 

disappears. From another point of view, the 

q-deformation can be interpreted in terms 

of the non-commutative quantum 

mechanics. In this context, Lavagno et al. 

[9] investigated the meaning of                        

q-deformation by applying non-

commutative q-calculus. Then, they were 

able to obtain the generalized q-classical 

theory in terms of the q-deformed Poisson 

bracket [9].  

 Eftekharzadeh et al. and Benatti et al.       

[10-12] also investigated the interpretation 

of the non-commutative quantum 

mechanics by applying the classical limit. 

In spite of all the attempts to interpret           

q-deformation mentioned above, there is 

still a problem facing the understanding of 

the physics behind this kind of deformation. 

The present paper is an attempt to 

investigate the nature of q-deformation for 

the q-deformed quantum oscillator by using 

Zaslavskii’s method [13] to obtain the 

Heisenberg equation of motion (quantum 

Liouville equation), then approach the 

classical limit to recover the classical 

Liouville equation of the q-deformed 

oscillator.   

The rest of the paper is organized as 

follows. First, the q-deformed quantum 

harmonic oscillator is discussed where its 

Hamiltonian is introduced for both types of 

q-deformation. Then, the equations of 

motion and the Liouville equations are 

derived by using Zaslavskii’s method [13]. 

The solutions for these Liouville equations 

are obtained by using the method of 

characteristics, then used to simulate the 

behavior in two and three dimensions and 

finally the conclusions are presented.    

 

q-Deformed 1-D Quantum Harmonic 

Oscillator 

In general, there are different versions of 

the q-deformed quantum harmonic 

oscillator according to the q–commutator 

that is adopted for each version as well as 

to the definitions of the bosonic operators 

that satisfy these q-commutators [14-19]. 

An example of the q-deformed quantum 

oscillator is given in ref. [15] in which 

Biedenharn introduced the following               

q–commutator:  

( )† 1 † ˆ†ˆ ˆ ˆ ˆ ˆ ˆ, 1
N

a a a a q a a qq q q q q q
q

  = − =
  

However, according to Man’ko [4], the        

q-deformed oscillator represents a special 

type of nonlinearity where the frequency of 
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the oscillator depends on the energy of the 

oscillator (i.e.,
2

 ). In this context, an         

f-deformed oscillator, which is a 

generalization of the q-oscillator, was 

introduced by Man’ko [5]. The realization 

of the f-deformed boson operators â f  and

†
â

f
 in terms of the undeformed boson 

operators â  and †â was achieved via the 

transformation [4-6]:   

( ) ( )

( ) ( )

ˆ ˆˆ ˆ ˆ1

† † †ˆ ˆˆ ˆ ˆ 1

a f N a f N af

a a f N a f N
f

= = +



= = + 


     (2)        

where ( )ˆf N  represents a non-negative 

real operator-valued function of the number 

operator. It should be noted that the 

subscript “f” used here refers to the “f-

deformation” case. Also, whenever a q-

deformation process is used instead of the 

f-deformation process, then the subscript 

“f” is interchanged by “q” and vice versa. 

The transformation from the f-deformed 

oscillator to the q-deformed oscillator or to 

the undeformed oscillator involves 

substituting specific values for the function

( )ˆf N  in the transformation of eqn. (2) in 

the form [4-6]:  

( )

 

ˆ

1 for undeformed oscillator

ˆ

for q-deformed o scillator
ˆ

Otherwise for f-deformed o scillator

f N

N
q

N

=









     

  (3) 

where, 

ˆ ˆ

1

ˆ
ˆ

ˆfor

sinh

sinh

4a
N N

λ N
N

q λ

q q
N

q q q

                  

and, 

ˆ

ˆ
1ˆ

1ˆf

1

or
1

N

λ N

N
q λ

q
N

e

q q

e

  

     (4b) 

 

Furthermore, the Hamiltonian operators of 

the deformed quantum harmonic oscillators 

for these two types of deformation are 

defined as [4-6, 20, 21]: 

 

( )† †ˆ ˆ ˆ ˆ ˆ
2

a a a aq q q q q
 

= + 
 

ω
          (5)  

 

and, 

( ) ( ) ( )( ) ( )2 2

ˆ
2

ˆ ˆ 6    ˆ ˆ1 1

f

N f N N f N

 
=  
 

 + + +

ω

     

respectively.                                                                                                         

 

Eqn. (5) represents the Hamiltonian 

operator of the q-deformed quantum 

harmonic oscillator in the q-deformed Fock 

space while eqn. (6) represents the 

Hamiltonian operator of the f-deformed 

quantum harmonic oscillator in the 

undeformed Fock space. 

The q-deformed number operator, N̂q , in 

terms of q-deformed boson operators is 

defined as [1,15,19]: 

 

  †ˆ ˆ ˆ ˆN N a aq q qq
= =         (7)    

  †ˆ ˆ ˆ1N a aq q q+ =           (8) 

Substituting eqns. (7) and (8) in eqn. (6), 

one gets [15]: 

   ( )ˆ ˆ ˆ 1
2

N Nq qq
 

= + + 
 

ω
       (9)   
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Zaslavskii’s Method for Deriving the 

Quantum Liouville Equation for the       

q-Deformed Oscillator in the                        

 -Representation 

According to Zaslavskii [13], the equation 

of motion of an averaged physical quantity 

, ; t   is defined as [13]: 

, ; ˆ , ;
t

i t
t

  
  


          (10)        

where, 
2

2

1ˆ

ˆ ˆ, , 11

e

eq q




 







 



     

                            

The Hamiltonian of the q-deformed 

quantum harmonic oscillator is given by 

eqn. (9). And according to Sudarshan et al. 

[22], one have the following 

correspondence: 
†ˆ

for
ˆ

ˆ ,q

a

a





















          (12) 

 

and, 

†
ˆ ,

ˆ

for
ˆ q

a

a














                 (13) 

Substituting eqns. (12) and (13) into the 

expressions for N̂
q

 and ˆ 1N
q

 

appearing in ˆ ,q 









(see eqn. (9)), 

leads to:

 

1

sinh

sinh

sinh 1

sin

ˆ ˆˆ
ˆf r

ˆ 1
h

o

λ

N q NNλ q q
N q

q qλ

N q λ























                        (14) 

and, 

1

1

1

1ˆ
ˆ

1ˆfor
1

1

ˆ 1

λ

N q λ N

e

e

e

e

q
N q qλ

N q λ























                                            (15) 

 

where, N̂ q and ˆ 1N q  given by  eqns.(7) and (8). The same method can be used for N̂ q

and ˆ 1N q appearing in ˆ ,q 





. Now, substitution of N̂ q  and ˆ 1N q  from    eqns. 

(14) and (15) into eqn. (9), gives: 

sinh sinh 1
ˆ ,

2 sinh sinh

λ λ

λq λ

 
 



 

 




 

  



ω
              (16a) 
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hence, 

1 1ˆ

1

,
2 1 1

λ λ

e e
q

e e
λ λ

 
 




 

 




 

 



ω
                                     (16b) 

and, 

sinh sinh 1
ˆ ,

2 sinh sinh

λ λ

λq λ

 
 



 

  



ω
                                    (17a) 

hence, 

1 1ˆ ,
2

1

1 1

λ λ
e e

λq
e e
λ

 
 




 

 



ω
                  (17b) 

respectively. 

 

Using eqns. (16) and (17) in eqn. (11), leads 

to: 
21

2

ˆ 2sinh

sinh sinh 1

sinh sinh 1

λ

λ

e

λ

e

λ

λ



 
 

 
 



 

 

 

 

 

 

ω

   

                                                           (18a) 

and, 
21

2

ˆ 2 1

1

1

e

e e

e e e

λe

λ λ

λ λ



 
 

   

 

 

 

 

 

 

ω

                (18b) 

respectively. 

Then, using the definition of the sine 

hyperbolic function and re-arranging terms, 

eqn. (18a) can be cast in the form:   
21

2

ˆ 4sinh

1

1

e

λe e e

eλ
e e

λ

λ λ

λ

e

λ



 
 

 
 









 

 

 

 

ω

  

       (19a) 

Similarly, eqn. (18b) becomes: 
21

2

1ˆ 2

1

e

e e e

λe

λ λ
λe



   





 

 

ω

 (19b) 

Eqns. (19a) and (19b) can be substituted in 

eqn. (10), and after replacing , ; t    

by , ; tq  
, one obtains:   
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21

2

, ;
4sinh

1

1

, ;

λ

λ λ

tq
e

t

λe e e

λ
e e e

e

λ

t

λ

q

  


 
 

 
 


  













 

 

 

 

ω

  

     (20a) 

 

and, 

21

2

1
, ;

2

1

, ;

λe
tq

e
t

e e

λ

e

t

λ

e

λ

q

  


 
 


  









 

 

ω

 

        (20b) 

 

respectively, where the function 

, ; tq  
represents the q-analog of the 

averaged physical quantity , ; t    

appearing in ref. [13]. Also, it is noted that 

the function , ; tq  
reduces to 

, ; t   in the limit 1q → .  

 

Action of the Dilatation (Shift) 

Operators e

λ








  and e

λ




  

on the Function , ; tq  
 

Since the action of the dilatation (shift) 

operator 

x
xe  on a function F x is 

given by [23, 24]: 

( ) ( )
x

xe F x F xe






 =           (21) 

for any arbitrary constant λ , and 

replacing F x by ( ),F   , eqn. (21) 

gives: 

( ) ( ), ,

λ
λ

F F ee    






 






=                 

    (22) 

and, 

( ) ( ), ,

λ
λ

F F ee   


  






 =                        

                      (23) 

Eqns. (22) and (23) can be generalized to 

the case where the shift operator acts on the 

product of two functions 

( ) ( ), ,F G      (see Appendix). 

Using this result, leads to: 

( ) ( )

( ) ( )

, ,

, ,

λ

F G

λ
λ

F e e

e

G

   







  

 













=











     

                                 (24) 

and, 

( ) ( )

( ) ( )

, ,

, ,

λ

F G

λ
λ

F e

e

e G

   

 





 

 

 










=




                        

                    (25) 

respectively. 

Therefore, eqns. (20) can be simplified by 

using eqns. (24) and (25) with

( ) ( ) ( )
2

, ,, , ;F e tqG   


    = =  

and re-arranging to get:     
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2
1

2

2

, ;
4sinh

1

1

, ;

tq
i e

t

λeλe e e e

λeλ
e e

e e tq

λ

λ λ

λ λ

  


   



 
    









 

 

 

 

 

ω

     

                  (26a) 

and, 

21

2

, ;
2

1

;

1

,

tq
i eλe

λ λλeλe

t

e e e

tq

  


   

  









 

 

ω

                                 (26b) 

respectively.   
 

Eqns. (26) represent the quantum Liouville 

equations for the q-deformed 1-D quantum 

harmonic oscillator in the                                   
 -representation. 

 

( )

( ) ( )

( )( )

( )

( ) ( )

( )

2 2

2
2 2

3

2 2

2

, ;

!

2!2

2!

e

tq

S





 




  



 



 











 




















−



  
− + 

  

 − + − 
 +

 
−



  − + 



 




+ 

+





−  






       (27) 
where,  

( )

( )

( )

2 4 6

1

2 3

2

2 3

3

3! 5! 7!

2! 3!

2! 3!

S

S

S

  


 
 

 
 


= + + + 




= + + +  



= − + − + 


  (28) 

 

Classical Limit of the Liouville Equation 

for , ; tq  
in the  -Representation  

Expanding all functions appearing in        

eqn. (26a) as power series in  , and 

simplifying the result, one obtains:  

 

( )

( )( )( )

( )( )

1

2
2 2

2

4

!

;

22

, 1

1 S

t i

t

eS

q



 


  






 

=  
+ 

 + + 
  +


−









ω

 

Applying the conditions for classical 

limiting namely; 
2

0, → →   such 

that
2

finite  → , to eqn. (28), where 

( ).const =   (i.e., 0 →  as fast as 

0→ ) and letting 

( ) ( ); , ;, CL

q
tq t    →P  in this limit, 

then eqn. (27) reduces to:  
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( )



( )

2

2

, ;

4

2

2

, ;

CL

CL

i

e

e

q
t

t

q
t

 

 
 



 
 



 













  
=  

  

   
 −  

−


+ 



 

  −
− 

 



 

ωP

P

  

          (29) 

where ( ), ;CL

q
t P  represents the 

classical probability distribution function. 

It should be noticed that the fact that in this 

limit ( ) ( ) ( )1 2 3 0S S S  = = =  has 

been used. Re-arranging the terms in        

eqn. (29), this equation becomes: 

( )

( ) ( )1

, ;

, ;

CL

CL

q
t

t

q
tqi

 

   




 




=



  
− 


−

 
ω

P

P

 

                       (30) 

where, 

( ) ( )2
coshq


 =ω ω      (31) 

Eqn. (30) represents a classical Liouville 

equation for a classical harmonic oscillator 

having frequency
( )1

qω . By expanding the 

frequency of this oscillator 
( )1

qω up to 2 , 

eqn. (30) becomes:  

( )

( )
2

4

, ;

, ;
2!

CL

CL

i

q
t

t

q
t

 
 




    








 



    
= − 

  

  

−





+ − 
  

P

P

ω

  

         (32) 

Eqn. (32) can be interpreted as a classical 

Liouville equation for a classical harmonic  

 

oscillator with frequency: 

( )
2

42
1

2!q



 

= + 
 
 

ω ω                          (33) 

Similarly eqn.  (26b) gives: 

( ) ( )

( ) ( )

3, ;

, ; 34

CL

CL

q
t

qt
i

q
t

 

   




 




=



  
 −

−

 
 

ω
P

P

  

( )
2

eq
  
=ω ω                  (35) 

Also, by expanding the frequency, ( )3

qω , of 

this oscillator up to , and applying the 

same previous mentioned limiting 

conditions, eqn. (34) becomes: 

( ) ( )

( )

4, ;

, ;

CL

CL

q
t

qt

q
t

i
 

   




 




=



  
 − 



−

 

ω
P

P

 

                    (36) 

where, 

( ) ( )2
1q


 = +ω ω        (37) 

By using the same technique that was 

introduced in Ref. [25], eqns. (30), (34) and 

(36) can be solved by the method of 

characteristics, and the time–evolution of 

the classical probability distribution 

function can be investigated in the non-  

rotating frame in phase space via a 

computer visualization method [25]. The 

results can then be shown in a                           

2-dimensional time-evolution contours of 

the probability distribution functions

( ), ;CL

q
t P  in phase space. These 

probability distributions functions exhibit 

whorl shapes and it is obvious that these 

whorl shapes become finer as t →  as in 

Figs. (1) - (3). 
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a. b. 

  

d. c. 

Fig. (1): The 2-D time-evolution contours of the classical probability distribution function 

for the q-deformed harmonic oscillator with frequency  given by              

eqn. (31) and  in phase space, for different values of time ( ): (a) , (b) ,   

(c) , and (d) .  
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a. b. 

 

d. c. 

Fig. (2): The 2-D time-evolution contours of the classical probability distribution function 

 for the q-deformed harmonic oscillator with frequency  given by           

eqn. (35) and  in phase space, for different values of time ( ): (a) , (b) ,     

(c) , and (d) .  
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a. b. 

 

d. c. 

Fig. (3): The 2-D time-evolution contours of the classical probability distribution function 

 for the q-deformed harmonic oscillator with frequency  given by              

eqn. (37) and  in phase space, for different values of time ( ): (a) , (b) ,                       

(c) , and (d) .  

Journal of Al-Nahrain University                 Vol. 19. September.2016 pp 53-69           Science 



12 
 

Also, in Figs (4) - (6), the results of the 3-D 

time-evolution of the classical probability 

distribution functions ( ), ;CL

q
t P  are 

presented in phase space. From these 

figures, it can be seen that these probability 

distributions appear as q-deformed 

Gaussians. It is also clear from all these 

figures that the peaks of these q-deformed 

Gaussians do not change with time. These 

peaks follow the classical trajectories for 

the probability distribution functions 

shown in Figs. (1)-(3). Another observation 

is that the Gaussian shapes of these 

distributions become more convoluted 

around themselves as t → . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

Fig.(4): The 3-D time-evolution of the classical probability distribution function 

 for the q-deformed harmonic oscillator with frequency  given by eqn. (31) 

and  in phase space, for different values of time ( ): (a) , (b) ,                       

(c) , and (d) .  

      

      

     

`  

 

 

 

 

 

b. a. 

  

 

 

 

 

 

  

d. c. 
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Fig.(5): The 3-D time-evolution of the classical probability distribution function 

 for the q-deformed harmonic oscillator with frequency  given by            

eqn. (35) and  in phase space, for different values of time ( ): (a) , (b) , 

(c) , and (d) .  

 

a. b. 

d. c. 
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Fig. (6): The 3-D time-evolution of the classical probability distribution function 

 for the q-deformed harmonic oscillator with frequency  given by            

eqn. (37) and  in phase space, for different values of time ( ): (a) , (b) , 

(c) , and (d) . 

a. b. 

d. c. 
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Conclusions  

A number of conclusions can be drawn 

from the present investigation as follows: 

1. The classical limit of the 1-D q-deformed 

quantum harmonic oscillator is statistical in 

nature. This is clear from eqns. (32) and 

(36) where the classical Liouville equations 

are obtained for the 1-D q-deformed 

classical harmonic oscillator in the                
 -representation. This is in conformity 

with the work of Ghosh et al. [26], where 

the classical Liouville equation was 

obtained for the 1-D classical simple 

harmonic oscillator by applying the 

classical limiting conditions 0→ , 

2
 →  , such that 

2
finite → .  

2. The q-deformed 1-D quantum harmonic 

oscillator can be interpreted as a nonlinear 

quantum oscillator where the nonlinearity 

parameter  depends on the  such that 

( )const. =  . This dependence is 

required for the classical limit to exist. 

Based on the more detailed approach to the 

classical limit adopted in this work, this 

interpretation seems to be more accurate 

than that introduced by Man’ko [4] where 

this oscillator was interpreted as a nonlinear 

quantum oscillator with a special type of 

nonlinearity with an energy dependent 

frequency.  

 3. The q-deformation of the 1-D quantum 

harmonic oscillator induces a                      

non-commutative geometry. This can be 

understood in the light of Vitiello’s work 

[27], where the q-deformation of the 

coherent states was studied to find that the 

fractal self-similarity obtained by defining 

a fractal operator

d

dq


 leads to a               

non-commutative geometry. The 

expression of this fractal operator is similar 

to those appearing in the present work as a 

dilatation (shift) operators e







 and 

e











 . These dilatation (shift) 

operators are inherent in the q-deformation 

and arise naturally in the quantum Liouville 

equations given in eqns. (26), for the             

q-deformed 1-D quantum harmonic 

oscillator in the  -representation.   

4. The behavior of the classical limit of the 

quantum Liouville equation for the                

q-deformed 1-D quantum harmonic 

oscillator in phase space shows whorl 

shapes evolving with time as in                  

Figs. (1)-(3). These figures are similar to 

those introduced by Milburn [28] for the     

1-D classical anharmonic oscillator. This 

similarity results from the fact that the 

anharmonicity itself represents a kind of 

deformation with a frequency which is a 

function of. The significance of this 

observation lies in the assumption that the 

whorl shapes in phase space can be 

considered as a generalized phenomenon 

whenever the q-deformation is used for any 

quantum system with arbitrary potential. 
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Appendix  

 

The action of the dilatation (shift) 

operators  

( ) ( ), ,e F G


     




  and 

( ) ( ), ,e F G


    



  




  

 

Assume two functions ( )F x and ( )G x that 

have power series expressions of the form:
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( ) m
m

m 0

F x a x


=

=     (A.1)  

( ) m
m

m 0

G x b x


=

=      (A.2)  

Using these expressions, the product 

( ) ( )F x G x  can be written as: 

( ) ( ) ( )

( )

2 3
1 2 3

2 3
1 2 3

o

o

F x G x a a x a x a x

b b x b x b x

= + + + +

 + + + +
 

     (A.3) 

Multiplying both sides of eqn. (A.3) from 

left by the dilatation (shift) operator 
x

xe




  

where   and x  are given in eqns. (21), 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

2

1 1 2

3

3

2 2

2 1 2

3

3

3 2

3 1 2

3

3

o

o

o

a e x b b e x b e x

b e x

a e x b b e x b e x

b e x

a e x b b e x b e x

b e x

  



  



  




+ + +




+ +




+ + +




+ +




+ + +




+ +



     (A.5)

     

the result is: 

( ) ( )

(
)

(

)

(

)

( )

2
1 2

3
3

2 3
1 1 1 1 2

4
1 3

2 3 4
2 2 1 2 2

5
2 3

3 4 5 6
3 3 1 3 2 3 3

o o o o

o

o

o

o

x x
x xe F x G x e

a b a b x a b x

a b x

a b x a b x a b x

a b x

a b x a b x a b x

a b x

a b x a b x a b x a b x

 
 

 =

 + +

+ +

+ + + +

+ +

+ + +

+ +

+ + + + +

 

(A.4)  

Applying eqn. (21) to eqn. (A.4) and 

simplifying, the result becomes: 

( ) ( )

( ) ( )

( )

2

1 2

3

3

o o

x
xe F x G x

a b b e x b e x

b e x

 






 =


+ +




+ +



 

Collecting similar terms, this gives: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3

1 2 3

2 3

1 2 3

o

o

x
xe F x G x

a a e x a e x a e x

b b e x b e x b e x

  

  




 =

 
+ + + + 

 

 
 + + + + 
 

     

                                                     (A.6)               

But since,  

( ) ( )
m

m
m 0

F e x a e x 


=

=    (A.7)  

( ) ( )
m

m
m 0

G e x b e x 


=

=     (A.8) 

then, substituting eqns. (A.7) and (A.8) into 

eqn. (A.6), one obtains: 

( ) ( ) ( ) ( )
x

xe F x G x F e x G e x


 



 =   

 (A.9) 

Using ( ) ( ),F x F  → as given in        

eqn. (22) and similarly ( ) ( ),G x G  →

in eqn. (A.9), substituting the definition of 
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  from eqn. (21) then applying eqns. (22), 

(23) for ( ),F  
 and ( ),G  

 

respectively to eqn. (A.9), the results 

become:

( ) ( )

( ) ( )

, ,

, ,

λ

e F G

λ
λ

F e e G


    


   



  



 




 =




 

    

 (A.10) 

and, 

( ) ( )

( ) ( )

, ,

, ,

λ
e F G

λ
λ

F e e G


    


   

 

 




 =




 

   

              (A.11)

References 

 

[1] Buzek V., 

“Dynamics of a q-Analogue of the 

Quantum Harmonic Oscillator”, 

 J. Mod. Opt., 38 (4), 801-812, 

1991.  

[2] Shabanov S. V., 

“The Poisson Bracket for q-

Deformed Systems”, 

J. Phys. A: Math. Gen., 25 (22), 

L1245-L1250, 1992.  

[3] Shabanov S. V., 

“Quantum and Classical 

Mechanics of q-Deformed 

Systems”, 

J. Phys. A: Math. Gen., 26 (11), 

2583-2606, 1993.  

[4] Man’ko V. I., Marmo G., 

Solimeno S. and Zaccaria F.,  

“Physical Nonlinear Aspects of 

Classical and Quantum q-

Oscillator”, 

Int. J. Mod. Phys. A, 8 (20), 121-

167, 1993. 

[5] Man’ko V. I., Marmo G., 

Sudarshan E. C. G. and Zaccaria 

F., 

“f-Oscillators and Nonlinear 

Coherent States”, 

Phys. Scr., 55 (5), 528-541, 1997. 

 

[6] Man’ko V. I. and Mendes R. V., 

“On the Nonlinearity 

Interpretation of q- and f-

Deformation and some 

Applications”, 

J. Phys. A: Math. Gen., 31 (28), 

6037-6044, 1998.  

[7] Gruver J. L., 

“q-Deformed Dynamics of                       

q-Deformed Oscillators”, 

Phys. Lett.  A, 254 (1-2), 1-6, 1999.  

[8] Batouli J. and El Baz M., 

“Classical Interpretation of a 

Deformed Quantum Oscillator”, 

Found. Phys., 44 (2), 105-113, 

2014.  

[9] Lavagno A., Scarfone A. M., 

Swany P. N., 

“Classical and Quantum q-

Deformed Physical Systems”, 

Eur. Phys. J. C, 47 (1), 253-261, 

2006.  

[10] Eftekharzadeh A. and Hu B. L., 

“The Classical and Commutative 

Limit of Non-commutative 

Quantum Mechanics: A super ⋆ 

Wigner-Moyal Equation”, 

Braz. J. Phys., 35 (2A), 333-341, 

2005.  

Journal of Al-Nahrain University                 Vol. 19. September.2016 pp 53-69           Science 



18 
 

 

 

  

[18] Quesne C., Penson K. A. and 

Tkachuk V. M.,  

“Maths. Type q-Deformed 

Coherent States for 1q  ”, 

Phys. Lett. A, 313 (1-2), 29-36 

2003.  

[19] Chaichian M. and Demichev A., 

“Introduction to Quantum 

Groups”, 

World Scientific Publishing Co. 

Pte. Ltd., Singapore, pp. 111-151, 

1996.  

[20] Isar A. and Scheid W., 

“Deformation of Quantum 

Oscillator and of its Interaction 

with Environment”, 

Physica A: Statistical Mechanics 

and its Applications, 335 (1-2), 79-

93, 2004.  

[21] Isar A., 

 “Deformed Open quantum 

Systems”, 

Proceedings of the International 

Workshop, Bucharest, Romania, 

7-12, Sep. 2003.  

[22] Klauder J. R. and Sudarshan E. C. 

G.,  

“Fundamentals of Quantum 

Optics”, 

W. A. BENJAMIN, INC., New 

York, pp. 105-135, 1968.  

[23] Barnett S. M. and Radmore P. M., 

“Methods in Theoretical Quantum 

Optics”, 

Clarendon Press. , Oxford, pp. 

265-268, 1997.  

[24] Puri R. R., 

“Mathematical Methods of 

Quantum Optics”, 

Springer, Berlin, pp. 48-50, 2001. 

[25] Ahmed S. Mahmood and M. A. Z. 

Habeeb, 

 “The Classical Liouville 

Dynamics of the q-Deformed 1-D 

Classical Harmonic Oscillator”, 

Submitted for Publication in 

Journal of Al-Nahrain University, 

Science.  

[11] Benatti F. and Gouba L., 

“Classical Limits of Quantum 

Mechanics on a Non-Commutative 

Configuration Space”, 

J. Math. Phys., 54 (6), 2013.  

[12] Benatti F. and Gouba L., 

“Interpretation of the Classical 

Limits of Quantum Mechanics on 

a Non-Commutative 

Configuration Space”, 

       ArXiv: 1409.5255v1 [quant-

ph] 18   Sep 2014 available at: 

http://arxiv.org/abs/1409.5255 

[13] Zaslavskii O. B., Sinitsyn Y. A. 

and Tsukernik V. M., 

“Time Evolution of a Quantized 

Anharmonic Oscillator and Its 

Spin Analogue”, 

Sov. Phys. JETP, 64 (1), 90-95, 

1986.  

[14] Arik M. and Coon D. D., 

“Hilbert Space of Analytic 

Functions and Generalized 

Coherent States”, 

J. Math. Phys., 17 (4), 524-527, 

1976.  

[15] Biedenharn L.C., 

“The Quantum Group ( )SU 2q  

and a q-Analogue of the Boson 

Operators”, 

J. Phys. A: Math. Gen., 22 (11), 

L873-L878, 1989.  

[16] Macfarlane A.J., 

“On q-Analogues of the Quantum 

Harmonic Oscillator and the 

Quantum Group   ( )SU 2
q

”, 

 J. Phys. A: Math. Gen., 22 (1), 

4581-4588, 1989.  

[17] Quesne C., 

“New q-Deformed Coherent States 

with an Explicitly Known 

Resolution of Unity”, 

J. Phys. A: Math. Gen., 35 (43) 

9213-9226, 2002.  

Journal of Al-Nahrain University                 Vol. 19. September.2016 pp 53-69           Science 

http://arxiv.org/abs/1409.5255


19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 الخلاصة

في    ”q“الفيزيائي للتشوه من نوع  التفسيرتقصي تم  

لحالتين من  البعد الواحد يذ الكمي المتذبذب التوافقي

أستخدام طريقة هذه العملية بتمت . تعريف التشوه

(Zaslavskii’s) ت لغرض الحصول على معادلا

ليوفل الكمية( بدلالة  تلحركة لهايزينبيرك )معادلاا

ليوفل  تأظهرت معادلا. غير المشوه لفضاء الطور التمثيل

الكمية هذه هندسة ذات طبيعة لاتبادلية ناتجة عن وجود مؤثر 

متأصل في والذي يكون  (Dilatation Operator)التمدد 

تم أيضا الحصول على الغاية الكلاسيكية   .”q“التشوه 

 ودية لمعادلات ليوفل الكمية بواسطة تطبيق شروط حد

معينة لهذه المعادلات للحصول على معادلات ليوفل 

. تم حل ”q“ الكلاسيكية للمتذبذب ذي التشوه من النوع 

ليوفل الكلاسيكية هذه بأستخدام طريقة  تمعادلا

توزيع الأحتمالية وال الخصائص للحصول على د

م تقصي السلوك ثنائي البعد ثالكلاسيكية لهذا النظام , 

بأستخدام  طريقة حاسوبية وال وثلاثي البعد لهذه الد

برنامج حاسوبي لهذا الغرض حيث تم بناء ، مرئية

. كشفت Mathematica®باستخدام حزمة برمجيات  

ليوفل الكمية  تالنتائج بأن الغاية الكلاسيكية لمعادلا

في  ”q“ للمتذبذب التوافقي الكمي ذي التشوه من النوع 

.  هذه  النتيجة البعد الواحد هي ذات طبيعة أحصائية

 (.Ghosh et al) ة التي حصل عليهاجالنتي تتوافق مع

 للمتذبذب التوافقي الكمي غير المشوه ذي البعد الواحد

حيث يرتبط معامل اللاخطية للمتذبذب المشوه من النوع 

”q“ صل لدالة توزيع ستحالسلوك المأظهر .  بالثابت

الأحتمالية الكلاسيكية اشكال لولبية تتطور مع الزمن في 

المقدمة من قبل  الطور مشابهة لتلك الاشكالفضاء 

(Milburn)  البعد  يللمتذبذب اللاتوافقي الكلاسيكي ذ

هذا التشابه ناتج من الحقيقة التي تنص على أن  .الواحد

نفسها تمثل نوع من أنواع التشوه حيث التردد  ةاللاتوافقي

  دالة للسعة. 
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