

On Almost and Star α-Hurewicz Spaces

Tamadher Waleed Said Ghani¹, Jalal Hatem Hussein Bayati¹, Ana María Zarco^{2, *}

¹Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq ²Department of Mathematics, Universidad Internacional de La Rioja, Logroño, Spain

<http://doi.org/10.22401/ANJS.27.3.15>

*Corresponding author: anamaria.zarco@unir.net \odot

This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/)

1. Introduction

Weak and strong definitions of open sets have been applied by many authors [1-3]. They have given rise to new concepts of continuity: Еc-continuous and δ- β c-continuous [4], new types of totally continuous⁵, faintly θ-semi-continuous, and faintly δ-semicontinuous functions [6]. The generalization of open sets has played important role in many works in concepts like games theory, graph theory and soft topology [7-9]. Also, the concept of generalization of topological spaces used certain types of open sets [10]. Besides, covering properties have been studied in different forms of open sets [11]. In Topological spaces (for short Γ , s), for a subset A of a space X , the notationscl (\mathcal{A}) , int (\mathcal{A}) stand for the closure and the interior of A, respectively. The meaning of T_A is the topology on A inherited from a space X with a topology $\mathcal T$. The notion of α -open sets was introduced by Njastad [12]; a subset A of a T.s. X is said to be α open set, if $A \subseteq \text{int}(cl(int(A)))$ and α -closed if it is the complement of an α-open set. Since the concept of α-open sets has played a role in several significant places in the study of T.s's, the relevance of the definition presented is evidenced by previous studies. A T.s. X is said to be α compact (respectively, α -Lindelof) space, if for every α -open cover of X, $\{U_j : j \in J\}$, a finite (respectively, a countable) subcover [13] can be found. A T. s. X is called a countably α compact space, if of each countable set of open α -compact subsets that covers X it is possible to get a finite subcover [14]. A Menger and Hurewicz properties are one of the most important kinds of selection principles. A T.S X has the Menger (resp .Hurewicz) property, if for every sequence $((\mathfrak{U}_n)_{n\in\mathbb{N}}$ of open covers of X there exists a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ such that every \mathcal{V}_n is a finite subset of \mathfrak{U}_n and the family $\cup \{V: V \in \mathcal{V}_n, n \in \mathbb{N}\}$ is a cover of X (resp. each $x \in X$ belongs to $\cup \mathcal{V}_n = \cup \{V : V \in$ \mathcal{V}_n , n $\in \mathbb{N}$ for all but finitely many n). The concept of α-open set will be used to define a new form of Hurewicz space. The study in this paper revolves around a new type of T.s, which generalizes the

Al-Nahrain Journal of Science

ANJS, Vol.27(3), September, 2024, pp. 142-148

Hurewicz property and as a study close to what was presented in previous studies about Hurewicz property. Moreover, " α -Hurewicz property" is discussed, where some of the main characteristics of this space were presented. A subset A of a T.s X is said to be β-open set, if $A \subseteq \text{cl}(\text{int}(\text{cl}(\mathcal{A})))$ and βclosed the complement of β-open set [14]. A subset $\mathcal A$ of T. s X, is said to be a semi-open set (shortly s-open) [15], if $A \subseteq \text{cl(int}(A)$. A subset A of a T. s X is called regular open set if $\mathcal{A} = \text{int}(cl(\mathcal{A}))$, (respectively, regular closed if $\mathcal{A} = cl(int(\mathcal{A}))$. Following a natural way, the intersection of all α -closed sets of X containing $\mathcal A$ is said to be the α -closure of $\mathcal A$, written as $cl_{\alpha}(\mathcal{A})$ [12]. The union of all α -open sets of X contain in $\mathcal A$ is said to be α interior of $\mathcal A$, written as $int_{\alpha}(\mathcal{A})$ [12]. The definition of α closed subset is equivalent to $\mathcal{A} = \text{cl}_{\alpha}(\mathcal{A})$. The family of α open (β-open and s-open, respectively) subsets of X is denoted by T^{α} (T^{β} and T^s respectively). It is shown that each of $T \subseteq T^{\alpha}$ and T^{α} is a topology on X[12]. The collection T^{β} is not a topology for X because the intersection of β-open sets is not in general a β-open set. Take, for instance, $(\mathbb{R}, \mathcal{T}_n)$, and the intervals $(0,$ 1] and [1, 2]. In the same way of definition $cl_{\alpha}(\mathcal{A})$ and $\text{int}_{\alpha}(\mathcal{A})$, the concept of $\text{cl}_{\beta}(\mathcal{A})$ ($\text{int}_{\beta}(\mathcal{A})$), and $\text{cl}_{s}(\mathcal{A})$ (int_s($\mathcal{A})$) was defined, respectively. For any subset $\mathcal A$ of X, $int(\mathcal A) \subseteq int_{\beta}(\mathcal A) \subseteq \mathcal A \subseteq cl_{\beta}(\mathcal A) \subseteq$ cl(A), $int(\mathcal{A}) \subseteq int_s(\mathcal{A}) \subseteq \mathcal{A} \subseteq cl_s(\mathcal{A}) \subseteq cl(\mathcal{A})$ and $T \subseteq T^{\alpha} \subseteq T^s \subseteq T^{\beta}$. In addition, the properties of α . Hurewicz as an image or preimage of special types of continuous mappings are studied. Newly, the concept of α-covering property have been examined with a variation, after applying the interior and the closure operators on a Hurewicz property [16]. Furthermore, different forms have been studied in case of the sequence of open covers are changed with generalized open sets [16]. In connection with this notion, the Menger property is very similar to the Hurewicz property although, analyzed in locales in [17], it is a stronger condition,

2. α -Hurewicz Spaces

This section deals with the statement of results about α -Hurewicz spaces and besides, some examples of topological spaces are provided to show the relationships among Hurewicz, α-Hurewicz, β-Hurewicz, s-Hurewicz spaces and another types of spaces such that α -compact and α -Lindelof spaces.

Definition 2.1. [16] Let *X* be a *T*.s and $A \subseteq X$. Then A has α -Hurewicz property, if \forall sequence $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ of α -open covers of \mathcal{A}, \exists sequence $(\mathcal{V}_n)_{n \in \mathbb{N}}$ for any $n \in \mathbb{N}$ N, where V_n is a finite subset of \mathfrak{U}_n . Also for every

 $x \in \mathcal{A}$ satisfied that $x \in \bigcup \mathcal{V}_n$ for all but finitely many n_r . A T. s X is α -Hurewicz space when the set X is α -Hurewicz.

Example 2.1. Take $X = \mathbb{Z}^+$ (positive integers) with \mathcal{T}_{dis} (discrete topology). So, $\mathcal{T}_{dis} = \mathcal{T}^{\alpha}$ and hence (X, \mathcal{T}_{dis}) is α -Hurewicz space.

The following examples show the relation between a compact space (respectively, Lindelof Hurewicz, α compact, α -Lindelof) and α -Hurewicz with the following corresponding spaces in $(\mathcal{T}^s$ and \mathcal{T}^{β} respectively). Some concepts are recalled in Definition 2.2.

Definition 2.2. A topological space(X, \mathcal{T}) is said to be (i) $semi\text{-}Hurewicz[13](resp. \beta - Hurewicz[18])$ if for every sequence $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ of semi open (resp. β -open) cover there is a sequence $(\mathcal{V}_n)_{n \in \mathbb{N}}$ for any $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathfrak{U}_n and for each $x \in X$ for all but finitely many *n*, with $x \in \bigcup \mathcal{V}_n$.

(ii) α - Lindelof [18] if for all cover $\{\mathcal{A}_i \mid j \in J\}$ of X, being A_i ($j \in J$) α – open sets, there is a countable sub cover.

Evidently, the following implications are hold:

β -Hurewicz ⇒ s -Hurewicz ⇒ α -Hurewicz ⇒ Hurewicz

It is simple to show that every α-compact space is α-Hurewicz space, but the converse does not necessarily hold, for instance, let $X = \mathbb{Z}$ with $T = T_{dis}$. Then X is α -Hurewicz space, but it is not α -compact, since $\{x\}$: $x \in X$ be a open cover of X has no a finite subcover.

Also, every α-Hurewicz space is Hurewicz space, but the converse is not true as the following example. Let A be a finite subset of an uncountable set X. Then $\mathcal{T} = \{\emptyset, A, X\}$ is a topology on X. The space (X, \mathcal{T}) is Hurewicz but it is not an α -Hurewicz space because the sequence of an α -open cover $\mathfrak{U}_n =$ ${A \cup \{x\}: x \in X \setminus A}$ for each $n \in \mathbb{N}$, because it is not possible to find a countable subcover of the cover \mathfrak{U}_n .

It is easily established that if X is a s-Hurewicz space, then X is an α-Hurewicz space, however, the converse does not necessarily hold. Indeed, let $X =$ $\mathbb{R}\cup\mathcal{P}$, where \wp be a countable set and $\mathbb{R}\cap\mathcal{P}=\emptyset$ with a topology, which is defined by

 $\mathcal{T} = \{ \mathcal{U} \subseteq \wp : \mathcal{U}^c$ is a finite subset of $\wp \} \cup \mathcal{T}_u$.

Here, X is a α -Hurewicz space, but it is not s-Hurewicz space. Additionally, every $β$ – Hurewicz space (respectively semi -Hurewicz) is α-Hurewicz

Al-Nahrain Journal of Science

ANJS, Vol.27(3), September, 2024, pp. 142-148

space but the converse is not true as it happens considering $X = \mathbb{R}$, with $\mathcal{T} = \mathcal{T}_{ind}$ (indiscrete topology). Here, the topological space is α -Hurewicz (s-Hurewicz respectively), but not is β-Hurewicz.

Moreover, if X is s -Hurewicz (respectively α-Hurewicz) then it is Hurewicz but, the converse is not satisfied in the next example. Let $X = \mathbb{R}$, with a usual metric topology T_u . Here, X is a Hurewicz space. In the proof is essential the fact of [−n, n] is compact. Nevertheless, it is not s-Hurewicz space, since $\mathfrak{U}_n = \{ [r, r + \frac{m-1}{m}$ $\frac{n-1}{m}$, $r \in \mathbb{Z}$, $m \in \mathbb{N}$ is a sequence of cover of X, ([r, $r + \frac{m-1}{m}$ $\frac{n-1}{m}$, is s-open and $[r, r + 1]$ is not s-compact), and it is not possible to find a finite subfamily of each \mathfrak{U}_n such that ℝ is covered by the union. As an example of α Hurewicz (α Lindelof respectively) space take the set $X = [0, \omega_1]$, with the ordinal topology, while if the set $X = [0, \omega_1)$ is taken, with the ordinal topology, is not α -Hurewicz (is not α -Lindelof) space. The family $\{u_{\alpha} = [0, \alpha): \alpha \in$ $[0, \omega_1)$ } is an α open cover of $[0, \omega_1)$ with no countable subcover.

Gaurav et al. proved in [16] that α Hurewicz property is not hereditary property, and study α continuity of α -Hurewicz spaces. Thus, the below example and results can be established.

Example 2.2. Suppose that $X = \mathbb{R}$, define a basis $B =$ $\{\mathcal{U}: \mathcal{U} \subseteq \mathbb{R}\}$; for a topology \mathcal{T} on X , with $\mathcal{U} =$ $\begin{cases} \{r\} \; : \; r \in X \setminus \{0\} \end{cases}$ $0 \in U$; U^c countable. It is clear that X is α . Hurewicz space.

Let us take $Y = \{ \{r\} : r \in X \setminus \{0\} \}$ is a subspace of X. As for any sequence of α -open covers of Y has no countable subcover, then Y is not α -Hurewicz space. The following proposition is proved with regular closed condition, and we do not need the clopen (i.e., closed and open) condition as in [16].

Proposition 2.1. Let (X, \mathcal{T}) be the α -Hurewicz space and $Y \subseteq X$. If Y is a regular closed set of X, then Y has the α -Hurewicz property.

Proof. Consider Y a regular closed subspace of the α -Hurewicz space X and $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ a sequence of α -open covers of Y. Let $\mathfrak{G}_n = {\mathcal{U} : \mathcal{U} \in \mathfrak{U}_n} \cup {\mathcal{X} \backslash Y}$, $n \in \mathbb{N}$. As Y is closed then $X \ Y$ is open and so α open. Hence $(\mathfrak{G}_n)_{n\in\mathbb{N}}$ is a sequence of α-open covers of X. By the α-Hurewiczness property of X, it is possible to obtain a sequence $(\mathcal{W}_n)_{n\in\mathbb{N}}$ with \mathcal{W}_n is a finite subset of \mathfrak{G}_n for each $n\in\mathbb{N}$ and $X=\bigcup_{n\in\mathbb{N}}\bigcup\mathcal{W}_n$. Taking for each n , $V_n = \{U : U \in W_n\}$, the sequence $(V_n)_{n \in \mathbb{N}}$ is a finite subset of \mathfrak{U}_n and each $x \in Y$ for all but finitely many

n, with $x \in \bigcup \mathcal{V}_n$. That is Y has the α -Hurewicz property. The following theorem states that the α -Hurewiczness is presented under α – irresolute mapping.

Definition 2.3. [19] Let $q: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a function between to topological spaces, then q is α irresolute if the inverse image of α - open is α - open.

Remark 2.1. A subspace of a product of spaces does not need to be α Hurewicz and neither is the product space as the next example shows.

Example 2.3. Consider the Sorgenfrey line \mathcal{S} , i.e., the set ℝ endowed by the topology provided by the base $B = \{ [x, y) : x \le y, x, y \in \mathbb{R} \}$. Then for any oblique line with negative slope $L = \{(r, s) \in \mathbb{S} \times$ $\mathbb{S}: s = ar + b, a < 0$ endowed by \mathcal{T}_L , the inherited topology of $\mathcal{S} \times \mathcal{S}$. L is not α -Hurewicz because of $T_L = T_{dis}$ and neither does $\mathcal{S} \times \mathcal{S}$.

Assume that $\mathcal{S} \times \mathcal{S}$ is α -Hurewicz. The proof is based on the fact: every α -Hurewicz is α -Lindelof. Let us take $L \subseteq S \times S$. It is uncountable, as its cardinal is the same as the cardinal of ℝ. From α-closedness of L in $\mathcal{S} \times \mathcal{S}$, implies that $\mathcal{S} \times \mathcal{S}$ is not α -Lindelof, which is contradicts α -Hurewiczness of $\delta \times \delta$ Consequently, L is α -closed by $(S \times S) \ L$ is α -open in $\mathcal{S} \times \mathcal{S}$. Indeed, let $L^+ = \{(r, s) : s - ar - b > 0\}$ and $L^- = \{(r, s) : s - ar - b < 0\}$. So, $(\$\times\$\) \L = L^+ \UL^-$. Let $(r, s) \in L^+$. So, every α -open set contains (r, s) intersects more than one point with L (since we can write it as $[r, r + \epsilon) \times [s, s + \epsilon)$. But $[r, \frac{-ar - b + s}{s}]$ $\frac{-b+s}{2}$) \times $\left[S, \frac{-ar-b+s}{a} \right]$ $\frac{-b+s}{2}$) does not intersect L. If $(r, s) \in L^{-}$, then the α-nbhd $[r, \frac{ar+s-b}{2}]$ $\frac{+s-b}{2a}$) \times [s, $\frac{ar+b+3s}{4}$ $\frac{1}{4}$) does not intersect L. The sets L and L⁻ are both α -open in $\alpha \times \mathcal{S}$, hence, L is α -closed. Now, for every $(r, s) \in L$, each α -nbhd of (r, s) in $\mathcal{S} \times \mathcal{S}$ (it can be written by $[r, r + \epsilon) \times [s, s + \epsilon]$ ϵ), for $\epsilon > 0$) intersects L in just one point, (r, s) . Therefore, the property is proven.

Theorem 2.1. The product of an α -Hurewicz space and an α -compact space is α -Hurewicz.

Proof: Fix X an α -Hurewicz space and Y an α compact space. To show that $X \times Y$ is α -Hurewicz space, consider $(W_n)_{n\in\mathbb{N}}$ a sequence of α -open covers of $X \times Y$. Hence, there exists α -open covers $(\mathfrak{U}_n)_{n \in \mathbb{N}}$ and $(\mathcal{V}_n)_{n\in\mathbb{N}}$ of X and Y, respectively such that $\mathcal{W}_n =$ $\mathfrak{U}_n \times \mathcal{V}_n$. By a Hurewiczness of X, a sequence $(\mathfrak{U}'_n)_{n \in \mathbb{N}}$ can be taken with U'_n are finite subsets of U_n for each $n \in \mathbb{N}$ and for each $x \in X$ for all but finitely many n, with $x \in \bigcup \mathfrak{U}_n'$. Also, from α -compactness of ANJS, Vol.27(3), September, 2024, pp. 142-148

Y, choose a finite subset V'_n of $(\mathcal{V}_n)_{n\in\mathbb{N}}$ which is α open covers of Y. Now, consider $P_n = \mathfrak{U}'_n \times \mathcal{V}'_n$. Hence for each $n \in \mathbb{N}$, \mathcal{P}_n is a finite subset of \mathcal{W}_n and for each $(x, y) \in X \times Y$ for all but finitely many n, with $(x, y) \in \bigcup P_n$, which concludes the proof.

Remark 2.2. Recall that in a $T \succeq X$ and let $\mathfrak V$ be a collection of subsets of X. If A is a subset of X, then the star of A with respect to \mathfrak{A} , denoted by $St(\mathcal{A} \cdot \mathfrak{A}),$ is the set $\{U \in \mathfrak{A} : U \cap \mathcal{A} \neq \emptyset\}$; for $\mathcal{A} = \{x\}$ such that $x \in X$, $St(x \cdot \mathfrak{A})$ is written instead of $St({x} \cdot \mathfrak{A})$.

Definition 2.4. The space X is called star α Hurewicz space, if for any sequence $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ of α . open covers of X, sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ can be obtained for any $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathfrak{U}_n and for each $x \in X$, $x \in St(\bigcup \mathcal{V}_n \cdot \mathfrak{U}_n)$ for all but finitely many n.

As an example of star α -Hurewicz space, take $X = \mathbb{Z}^+$ the set of positive integers with T_{dis} (discrete topology). So, X is star α-Hurewicz space.

Definition 2.5. The space X is called strongly star α -Hurewicz space, if for any sequence $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ of α . open covers of X, a sequence $(\mathcal{F}_n)_{n\in\mathbb{N}}$ of finite subsets of *X* can be obtained, for any $n \in \mathbb{N}$, $x \in X$, implies that $x \in St(\mathcal{F}_n \cdot \mathfrak{U}_n)$ for all but finitely many n .

As an example of strongly star α-Hurewicz space, take \mathbb{Z}^+ (positive integers) with the topology $\mathcal{T} =$ $\{\mathcal{U} \subseteq X : \mathcal{U} = \{\mathbf{h} \in \mathbb{Z}^+ : 0 \leq \mathbf{h} \leq \mathbf{n} ; \mathbf{n} \in \mathbb{Z}^+\}\} \cup \{\emptyset\}.$ Thus, (X, \mathcal{T}) is a strongly star α -Hurewicz space.

Definition 2.6. The space X is called star α -compact space, if for each α -open covering $\mathfrak A$ of X, a finite set $A \subseteq X$ can be obtained such that $St(x_1 \cdot \mathfrak{A}) = X$.

As an example of star α -compact space. Let $X = \mathbb{Z}^+$ (positive integers) with T_{dis} . So, X is star α -compact space. The star α-compactness is not hereditary property as in the case of the following space. Let X be an arbitrary infinite set, $x_0 \in X$. Define a topology on X as follows: $\mathcal{T} = \{ \mathcal{U} \subseteq X : x_0 \notin \mathcal{U} \} \cup \{ \mathcal{U} \subseteq X :$ $X\setminus U$ is finite set}. The subsets $\{x\}$, $x \in X \setminus \{x_0\}$ are α . open. If $\mathfrak A$ is an α -open covering of X, there exists $\mathcal{U} \in \mathfrak{A}$ such that $x_0 \in \mathcal{U}$, so $\mathcal{U} = X \setminus \{x_1, \dots, x_n\}$. Then, it is enough to take $\mathcal{A} = \{x_0, x_1, \dots, x_n\}$. Hence, X is star α -compact space. However, the subspace Y = $X \setminus \{x_0\}$ is not. Fix the α -open cover $\mathfrak{A} = \{\{x\} : x \in Y\}$ of Y which does not have a countable subcover, therefore Y cannot be star α -compact space. There is a relation among the different shades ofα-Hurewicz spaces as contained in the following proposition.

Proposition 2.2. Let X be a $T \cdot s$. The following statements are holds:

i. Every α -Hurewicz space is star α -Hurewicz space.

ii. Every strongly star α -Hurewicz space is star α -Hurewicz space.

iii. Every star α -compact space is star α -Hurewicz space.

Proof.

- i. Consider X an α -Hurewicz space and. $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ any sequence of $α$ -open covers of X. So, a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ can be obtained for any $n \in$ $\mathbb{N},\,\mathcal{V}_n$ is a finite subset of \mathfrak{U}_n and for each $x\in X,$ for all but finitely many n, with $x \in \bigcup \mathcal{V}_n$. That is, $\bigcup \mathcal{V}_n \bigcap \mathcal{U}_n \neq \emptyset$ for all but finitely many n, and hence $x \in St(U\mathcal{V}_n \cdot \mathfrak{U}_n)$ for all but finitely many n. Therefore, X is a star α -Hurewicz space.
- ii. Let X be a strongly star α -Hurewicz space and take $\mathfrak A$ a cover of α -open sets of X. For the constant sequence of open covers $(\mathfrak{U}_n)_{n\in\mathbb{N}}$, where for each n, $\mathfrak{U}_n = \mathfrak{U}$, $\mathfrak{U} \in \mathfrak{V}$ there is a sequence $(\mathcal{F}_n)_{n\in\mathbb{N}}$ such that for n, $St(\mathcal{F}_n \cdot \mathfrak{U}_n) \in \mathfrak{U}$ (respectively, $St(U V_n \cdot \mathfrak{U}_n) \in \mathfrak{A}$). That is, $St(\mathcal{F}_n \cdot \mathcal{U}_n)$ is a countable subset of X with $St(U \mathcal{F}_n \cdot \mathfrak{U}) = X$. Consequently, $St(U \mathcal{V}_n \cdot \mathfrak{U}_n)$ is a countable subset of U such that $St(U V_n \cdot U)$. Then, there exists a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ for any $n \in \mathbb{N}, \mathcal{V}_n$ is a finite subset of \mathcal{U}_n and for each $x \in X$, $x \in St(U\mathcal{V}_n \cdot \mathcal{U}_n)$ for all but finitely many n. Hence X is star α-Hurewicz space.
- iii. Suppose that X is star α -compact space and consider $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ a sequence of α -open covers of X. From star α compactness of X, a finite set $A \subseteq X$ is found such that $St(A \cdot \mathfrak{A}) = X$. Therefore, there is a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ for any $n\in\mathbb{N},$ \mathcal{V}_{n} is a finite subset of \mathfrak{U}_{n} and for each $x \in X$, $x \in St(U V_n \cdot U_n)$ for all but finitely many n. Hence X star α-Hurewicz space.

3. Almost and Star α -Hurewicz Spaces

In this section, the concept of almost α -Hurewicz property is introduced and also several examples are included to point the relationships among Hurewicz, α -Hurewicz, β -Hurewicz, s -Hurewicz spaces and another types of spaces such that α -compact and α -Lindelof spaces.

Definition 3.1. Let *X* be a *T.s.* and $A \subseteq X$. Then A has the almost α -Hurewicz property, if for any sequence $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ of α -open cover of \mathcal{A} , where $\mathfrak{U}_n =$ $\{\mathfrak{U}_{n_j}\}_{j\in J_n}$, where $(J_n)_{n\in\mathbb{N}}$ is a sequence of index sets, I_n a finite set, and a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ can be obtained such that:

ANJS, Vol.27(3), September, 2024, pp. 142-148

- i. for any $n \in \mathbb{N}$, there is $I_n \subseteq J_n$; $\mathcal{V}_n = \{cl(\mathfrak{U}_{n_j})\}_{j \in I_n}$.
- ii. for each $x \in \mathcal{A}$, there is $n_0 \in \mathbb{N}$; for all $n \in \mathbb{N}$, $n >$ n_0 implies that there is $V \in V_n$ with, $x \in V$.

X is called an almost α -Hurewicz space when in the set X is satisfied the almost α -Hurewicz property. As almost α Hurewicz space there are examples such that the following.

Let $X = \mathbb{R}$, with $T = T_{ind}$ (indiscrete topology), then components of α open covers whose singleton elements are transpositions are entirely determined by an almost α Hurewicz property. Another characterization of almost α -Hurewicz space is given in the next result.

Theorem 3.1. For a space X the condition almost α -Hurewicz space is equivalent to that for each sequence $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ of covers of X by regular open sets, there exists a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$, such that

- i. for any $n \in \mathbb{N}$, there is $I_n \subseteq J_n$; $\mathcal{V}_n =$ ${cl(\mathfrak{U}_{n_j})\}_{j\in I_n}.$
- ii. for each $x \in A$, there is $n_0 \in \mathbb{N}$; for all $n \in \mathbb{N}$, $n > n_0$ implies that there is $V \in V_n$ with, $x \in V$.

Proof: (\Rightarrow) It is obvious, since every regular open set is open.

(←) Let $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ be a sequence of α – open set cover of X, such that $\mathfrak{U}_n = {\mathfrak{U}_{n_j}}_{j \in J_n}$. Let $\mathfrak{U}'_n =$ $\{\text{int}\left(\text{cl}(\text{int}(\mathfrak{U}_{n_j}))\right)\}_{j\in J_n}$, then \mathfrak{U}'_n is a regular open cover of X, by hypothecs a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$, is obtained such that

for any $n \in \mathbb{N}$, there is $I_n \subseteq J_n$; $\mathcal{V}_n = \{cl(\mathcal{U}'_{nj})\}_{j \in I_n}$.

for each $x \in X$, there is $n_0 \in \mathbb{N}$ such that $n \in \mathbb{N}$, $n >$ n_0 implies that there is $V \in V_n$ with, $x \in V$.

Since \mathfrak{U}_{n_j} α – open it is followed that $cl(\mathfrak{U}'_{n_j}) =$ cl((\mathfrak{U}_{n_j}) , and hence each $\mathcal{V}_n = \{cl (\mathfrak{U}_{n_j})\}_{j \in I_n}$.

Theorem 3.2. If X is an α -Hurewicz space, then X is an almost α -Hurewicz space.

Proof: Fix $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ a sequence of α -open covers of X, $\mathfrak{U}_n = (\mathfrak{U}_{n_j})_{j \in J_n}$. From α -Hurewiczness of X, a sequence (\mathcal{W}_n) n∈N is obtained such that:

(i) Each $W_n \subseteq \mathfrak{U}_n$.

(ii) For all $x\in X,$ there is $n_0\in\mathbb{N}$ for all $n\in\mathbb{N},$ $n>n_0$, $I_n \subseteq J_n$.

By (i), it is possible to write $W_n = (U_{n_j})_{j \in J_n}$, where $I_n \subseteq J_n$. Let $(\mathcal{V}_n)_{n \in \mathbb{N}}$ be a sequence of α -open sets defined by $V_n = (cl(\mathfrak{U}_{n_i}))_{j \in J_n}$. If $\in X$, then by (ii), there is $n_0 \in \mathbb{N}$ such that:

 \forall n $\in \mathbb{N},$
 $>$ \boldsymbol{n}_0 , $\mathcal{W} \in \mathcal{W}_n$ with
 $\textbf{x} \in \mathcal{W}.$ Since $W \in W_n$, $W = \mathfrak{U}_{n_j}$ for some $j \in I_n$ can be said. Let $V = (cl(\mathfrak{U}_{n_j}))_{j \in J_n}$. Then $V \in V_n$ and $x \in V$ since $W \subseteq V$. Hence X is almost α -Hurewicz space.

Remark 3.1. The below example indicates that in general the converse of theorem 4 is false.

Example 3.1. Consider X the Euclidean plane endowed with a topology T^{DR} generated by the base formed by the following sets:

 $DR_r(x_0, y_0) = (D_r(x_0, y_0) \setminus \{(x, y) \in D_r(x_0, y_0): x =$ x_0) ∪ {(x_0, y_0)}, where $D_r(x_0, y_0)$ is the disk centered in (x_0, y_0) and radius $r > 0$.

This topology is well known as deleted radius topology. As X is not an α -Lindelof space, then X does not verify the α -Hurewicz property.

However, X is almost α -Hurewicz. Indeed, every $DR_r(x_0, y_0)$ is an α open set and $cl(DR_r(x_0, y_0)) =$ $cl(D_r(x_0, y_0))$. Applying that \mathbb{R}^2 with the usual topology is σ-compact it is obtained the almost $α$ -Hurewicz property.

It is concluded the same with X the Euclidean plane endowed with a topology T^{BT} generated by the base formed by the following sets:

 $BT_r(x_0, y_0) = \{(x, y) : |y - y_0| < |x - x_0| < r\} \cup \{(x_0, y_0)\},$ $r > 0$. This topology is well known as deleted bow tie topology. Here, cl $(BT_r(x_0, y_0))$ is a compact set in the Euclidean plane with the usual topology, too.

Let X be a T.s. the following notions were introduced in:

- X is α regular [18], if for any $x \in X$ and a closed subset $\mathtt{B}\subseteq \mathtt{X}$ such that $\mathtt{x}\not\in \mathtt{B}$ there are two disjoint open sets $H_1, H_2 \subseteq X$ such that $x \in H_1$ and $cl(B \cap H_2) = B.$
- X almost α-regular [20], if for any $x \in X$ and a regularly closed subset $B \subseteq X$ such that $x \notin B$ there are two disjoint α - open sets $H_1, H_2 \subseteq X$ such that $x \in H_1$ and $cl(B \cap H_2) = B$.

Theorem 3.3. If X is an almost α -regular space and an almost α Hurewicz space, then X is an α Hurewicz space.

Proof: Consider $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ a sequence of α -open covers of X. From almost α -regularness of X, there is for each n an α -open cover $(\mathcal{V}_n)_{n\in\mathbb{N}}$ of X such that \mathcal{V}'_n = ${cl}(\mathcal{V}): \mathcal{V} \in \mathcal{V}_n$ is a refinement of \mathfrak{U}_n . By applying the hypothesis, a sequence $(\mathcal{W}_n : n \in \mathbb{N})$ is found such that for each n, W_n is a finite subset of V_n and $\bigcup \{ \mathcal{W}'_n : n \in \mathbb{N} \}$ is α -open cover of X, where $\mathcal{W}'_n =$

ANJS, Vol.27(3), September, 2024, pp. 142-148

 ${cl}(\mathcal{W}) : \mathcal{W} \in \mathcal{W}_n$. For every $n \in \mathbb{N}$ and every $\mathcal{W} \in$ W_n , choose $\mathfrak{U}_w \in \mathfrak{U}_n$ such that $(W) \subseteq \mathfrak{U}_w$. Put $\mathfrak{U}'_n =$ ${cl}(\mathcal{V}): \mathfrak{U}_{\mathcal{W}} \in \mathcal{W}_n$. Now, it is shown that $\bigcup \{\mathfrak{U}'_n : n \in \mathbb{N}\}$ ℕ} is α-open cover of X. Let x ∈ X. There is n ∈ ℕ and cl(W) $\in \mathcal{W}_n'$ such that $x \in \mathcal{W}$. So, there is $\mathfrak{U}_{\mathcal{W}} \in \mathfrak{U}_n'$ such that $W \subseteq \mathfrak{U}_w$. Then, $x \in \mathfrak{U}_w$.

Recall that a function f: $X \rightarrow Y$ is said to be almost α continuous, if for each regular open set \subseteq Y, $f^{-1}(B)$ is an α-open set in X.

Theorem 3.4. If X is an almost α -Hurewicz space, Y is any T.s., and $f: X \rightarrow Y$ is an almost α -continuous surjection, then Y is an almost α -Hurewicz space.

Proof: By Theorem 3.1 it is sufficient to do the proof for $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ a sequence of α -open covers of Y by α regular open sets. Assume that $\mathfrak{U}'_n = \{f^{-1}(\mathfrak{U}) : \mathfrak{U} \in$ $(\mathfrak{U}_n)_{n\in\mathbb{N}}\}$ for each $n \in \mathbb{N}$. Thus $(\mathfrak{U}'_n)_{n\in\mathbb{N}}$ is a sequence of α-open covers of X, because of f is an almost αcontinuous surjection. From almost α -Hurewiczness of X, a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ of X can be found such that for every $n \in \mathbb{N}$, V_n is a finite subset of \mathfrak{U}'_n and $\bigcup \{\mathcal{V}'_n : n \in \mathbb{N}\}$ is a α -open cover of X, where $\mathcal{V}'_n =$ ${cl}(\mathcal{V}): \mathcal{V} \in \mathcal{V}_n$. For each $n \in \mathbb{N}$ and $\mathcal{V} \in \mathcal{V}_n$, choose $\mathfrak{U}_{\mathcal{V}} \in \mathfrak{U}_{n}$ such that $\mathcal{V} = f^{-1}(\mathfrak{U}_{\mathcal{V}})$. Let $\mathcal{W}_{n} = \{cl(\mathfrak{U}_{\mathcal{V}}) : \mathcal{V} \in$ \mathcal{V}_n . It is only necessary to prove that $\bigcup \{ \mathcal{W}_n : n \in \mathbb{N} \}$ is a cover for X. Now, if $y = f(x) \in Y$, then it is obtained $n \in \mathbb{N}$ and $\mathcal{V}' \in \mathcal{V}'_n$ such that $x \in \mathcal{V}'$. Since $V = f^{-1}(U_{\mathcal{V}})$, $f^{-1}(cl(U_{\mathcal{V}}))$ is α – closed, $f(x) \in$ $f(cl(f^{-1}(\mathfrak{U}_{\mathcal{V}})) \subseteq cl(\mathfrak{U}_{\mathcal{V}})$. Hence, $y = f(x) \in \mathcal{W}_n$.

Definition 3.2. The space X is called almost star α -Hurewicz space, if for any sequence $(\mathfrak{U}_n)_{n\in\mathbb{N}}$ of α open covers of X, a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ can be obtained for any $n \in \mathbb{N}$ and $x \in X$, $x \in cl(St(\mathcal{V}_n, \mathcal{U}_n))$ for all but finitely many n.

As an example of almost star α -Hurewicz space, take $X = \mathbb{Z}^+$, with T_{dis} . Then X is almost star α . Hurewicz space.

Theorem 3.5. For X a T. s, the condition almost star α -Hurewicz space is equivalent to that for each sequence $(U_n)_{n\in\mathbb{N}}$ of α -open covers of X by of α regular open sets there is a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ such that for each $n \in \mathbb{N}$, V_n is a finite subset of \mathfrak{U}_n and ${cl}(\text{St}(\mathcal{V}_n, \mathcal{U}_n)) : n \in \mathbb{N}$ is a cover of X.

Proof: Suppose the condition is fulfilled, then it is clear every α -regular open set is α -open. Conversely, take $(U_n)_{n\in\mathbb{N}}$ a sequence of α -open covers of X. Let $\mathfrak{U}'_n = \{\text{int}(cl(\mathfrak{U})) : \mathfrak{U} \in \mathfrak{U}_n\}$. So, each \mathfrak{U}'_n covers X by α regular open sets. Certainly, as since $\mathfrak U$ is an α -open set then each int(cl(\mathfrak{U})) is a regular α -open set and $\mathfrak{U} \subseteq \text{int}(cl(\mathfrak{U}))$. So, it is possible to find a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ such that for every $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathfrak{U}'_n and $\{cl(St(\mathcal{V}_n, \mathfrak{U}'_n)) : n \in \mathbb{N}\}$ covers X. Therefore, it is enough to show.

 $St(\mathfrak{U} \mathfrak{U}_n) = St(int(cl(\mathfrak{U})) \mathfrak{U}_n)$ for each $\mathfrak{U} \in \mathfrak{U}_n$. Now, since $\mathfrak{U} \subseteq \text{int}(cl(\mathfrak{U}))$, it is obvious that $St(\mathfrak{U} \mathfrak{U}_n) \subseteq St(int(cl(\mathfrak{U})) \mathfrak{U}_n)$. Suppose that $x \in$ St(int(cl(\mathfrak{U}_n , \mathfrak{U}_n). Then there exists $\mathcal{V} \in \mathfrak{U}_n$ such that $x \in V$ and $V \cap int(cl(\mathfrak{U}) \neq \emptyset$. So, it is obtained $V \cap \mathfrak{U} \neq \emptyset$ \emptyset which implies $x \in St(\mathfrak{U} \mathfrak{U}_n)$. For every $\mathcal{V} \in \mathcal{V}_n$, choose $\mathfrak{U}_{\nu} \in \mathfrak{U}_{n}$ such that $\mathcal{V} = \text{int}(\mathfrak{U}_{\nu})$. Let $\mathcal{W}_{n} =$ $\{ \mathfrak{U}_{\mathcal{V}} : \mathcal{V} \in \mathcal{V}_n \}$. Now, it is proved that $cl\{ \mathsf{USt}(\mathcal{W}_n, \mathfrak{U}_n) : \}$ $n \in \mathbb{N}$ is a cover of X. For that, consider $x \in X$. Then it is possible to find $n \in \mathbb{N}$ such that $x \in$ $\text{cl}\{\text{St}(\cup\mathcal{V}_{\mathbf{n}},\mathfrak{U}_{\mathbf{n}}')\}$. For every neighborhood $\mathcal V$ of $\mathbf x$, $V \cap St(UV_n, \mathfrak{U}_n') \neq \emptyset$, then there exists $\mathfrak{U} \in \mathfrak{U}_n$ such that $(V \cap \text{int}(cl(\mathfrak{U})) \neq \emptyset) \wedge (UV_n \cap \text{int}(cl(\mathfrak{U}) \neq \emptyset) \neq \emptyset$, implies that $(\mathcal{V} \cap \mathcal{U} \neq \emptyset) \wedge (\cup \mathcal{V}_n \cap \mathcal{U}) \neq \emptyset$ then $W_n \cap U_n \neq \emptyset$, so $x \in \text{cl}(\text{USt}(\mathcal{W}_n, \mathfrak{U}_n)).$

4. Conclusions

Several topics related to the concepts of α-Hurewicz spaces have been treated. Even though α-Hurewicz condition is stronger than Hurewicz condition, in most results quite similar techniques for their proofs work with some adaptations, and thus, αcovering properties of α-Hurewicz have been analyzed. The examples provided show that the property α -Hurewicz property is different from the Hurewicz property and also from the almost α Hurewicz property (for example see theorems 2.1 and 3.3) As a prospective, these problems for the α-Menger properties, (considering Menger and almost Menger properties) could be studied, so far, as the authors know, they are still open.

Acknowledgments: The authors would like to thank the reviewers for providing the useful suggestions that improve the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- [1] Aziz, H.; Jalal, H.; "λ-Semi-open sets in generalized topological spaces". AIP Conf. Proc. 2022, 2398: 060078, 2022.
- [2] Osama, P.; Nehmat, K.; "Nano SC-Open Set in Nano Topological Space". Ibn al-Haitham j. pure appl. Sci, 36(2): 306-313, 2023.
- [3] Mustafa, M.O.; Esmaeel, R.B.; Some Properties in Grill–"Topological Open and Closed Set". J. Phys.: Conf. Ser. 2021, 1897: 012038, 2021.

Al-Nahrain Journal of Science

ANJS, Vol.27(3), September, 2024, pp. 142-148

- [4] Abdulwahid, S.H.; Al-Jumaili, A.M.F.; "On Еc-Continuous and δ-ßc-Continuous Mappings in Topological Spaces Via Еc-open and δ-ßc-open sets". Iraqi J. Sci, 63(7):3120-34, 2022.
- [5] Jasem, S.H.; Tawfeeq, B.J.; "New Types of Totally Continuous Mappings in Topological Space". Iraqi J. Sci,:134-9, 2020 Available from:
- [6] Shaimaa, H.; Jalal, H.; Zarco, A.M.; "On Faintly θ-Semi-Continuous and Faintly δ-Semi-Continuous Function". Baghdad Sci. J, 2023.
- [7] Afraa, R.; Karim, M.A.; "Some games via semigeneralized regular spaces". J. Interdiscip. Math, 26(5): 863–872, 2022.
- [8] Samah, S.; Yousif, Y.; "Generalized Rough Digraph and Related Topologies". J. Phys.: Conf. Ser. 2020, 1591 (012074):1-13, 2020.
- [9] Sabeha, I.; Haider, J.; "Soft Np-Open Sets in Soft Topological Spaces". J. Phys.: Conf. Ser. 2021, 1879: 032043, 2021.
- [10] Alaa, M.; Laheeb, M.; Haider, J.; "On Kαcspace". Ital. J. Pure Appl. Math, (47): 984-990, 2022
- [11] Tyagi, B.K.; Singh, S.; Bhardwaj, M.; "Covering properties defined by preopen sets". Asian-Eur. J. Math, 14(3): 2150035, 2021.
- [12] Njastad, O.; "On some classes of nearly open sets". Pacific J. Mathematics, 15(3): 961-970, 1965.
- [13] Kocinac, L.D.; Sabah, A.; Khan, M.; Seba, D.; "Semi-Hurewicz spaces. Hacettepe". J. Math. Stat, 46(1): 53-66, 2017.
- [14] Abd El-Monsef; El-Deeb, M.; Mahmoud, R.; "βopen sets and β-continuous mapping". Bulletin of the Faculty of Science, Assiut University, 12: 77-90, 1983.
- [15] Levine, N.; "Semi-open sets and semi-continuity in topological spaces". Amer. Math. Monthly, 70(1): 36-41, 1963.
- [16] Gaurav, K.; Sumit, M.; Brij, K.; "On θ-Hurewicz and α -Hurewicz topological spaces". arXiv:2307.00487v1. 2023.
- [17] Bayih, T.; Dube, T.; Ighedo, O.; "On the Menger and almost Menger properties in locales". Appl. Gen. Topol, 22(1): 199–221, 2021
- [18] Memet, K.; "β-Menger and β-Hurewicz spaces. Hacet". J. Math. Stat, 51(1): 1-7, 2022
- [19] Maheshwari, S.N.; Thakur, S.S.; "On αirresolute mappings". Tamkang J. Math. 1980, 11: 209–214, 1980.
- [20] Alzahrani, S.; "Almost α-regular spaces". J. King Saud Univ. Sci, 34(1): 101713, 2022.