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Abstract 

This paper is concerned with the existence and uniqueness state vector solution for a coupled of 

nonlinear parabolic equations using the Galerkin method when the continuous classical control 

vector is given, the existence theorem of a continuous classical optimal control vector with equality 

and inequality vector state constraints is proved, the existence and uniqueness solution of the 

adjoint equations associated with the state equations is studied. The derivation of the Frcéhet 

derivative of the Hamiltonian is obtained. Finally the necessary conditions theorem, so as the 

sufficient conditions theorem of optimality of the constrained problem are proved. 
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1 Introduction 
The optimal control problems play an 

important role in the many fileds in life 

problems, for examples in robotics [Rubio et al 

2011], in an electric power [Aderinto & 

Bamigbola 2012], in civil engineering [Amini 

& Afshar 2008], in Aeronautics and 

Astronautics [Budigono& Wibowo 2007], in 

medicine [El hiaet al 2012], in economic 

[Boucekkine& Fabbri 2013], in heat 

conduction [Borzabadi et al 2004], in biology 

[Agusto & Bamigbola 2007] and many others 

fields. 

The importance of optimal control 

problems encourage many researchers 

interested to study the optimal control 

problems for systems are governed either by 

nonlinear ordinary differential equations as in 

[Warga, 1972] and in [Orpel 2009] or by linear 

partial differential equations as in [Lions 1972] 

or are governed by nonlinear partial 

differential equations either of an elliptic type 

as in [Bors & Walczak 2005] or of a 

hyperbolic type as in [Al-Hawasy 2008] or by 

a parabolic type as in [Chryssoverghi &  

Al-Hawasy 2010], or optimal control problem 

is governed by a couple of nonlinear partial 

differential equations of elliptic type  

[Al-Hawasy & Al-Rawdhanee 2014]. 

This work is concerned at first with the 

existence and uniqueness of the state vector 

solution of a couple nonlinear parabolic 

differential equations using the Galerkin 

method for a given (fixed) continuous classical 

control vector. Second the existence theorem 

of a continuous classical optimal control 

vector governed by the considered couple of 

nonlinear partial differential equation of 

parabolic type with equality and inequality 

state vector constraints is proved. The 

existence and uniqueness solution of the 

couple of adjoint vector equations associated 

with the considered couple equations of the 

state is studied. The Fréchet derivative of the 

Hamiltonian of this problem is derived. Finally 

the theorems of necessary and sufficient 

conditions of optimality of the problem are 

proved. 
 

2. Description of the problem 

Let 𝐼 = (0, 𝑇), 𝑇 < ∞, Ω ⊂ 𝑅2 be an open 

and bounded region with Lipschitz boundary 

𝜕Ω, 𝑄 = Ω × 𝐼, Σ = 𝜕Ω × 𝐼. Consider the 

following continuous classical optimal control 

problem: The state equations are given by the 

non linear parabolic equations: 

𝑦1𝑡 − ∆𝑦1 + 𝑦1 − 𝑦2 = 𝑓1(𝑥, 𝑡, 𝑦1, 𝑢1),  ...... (1) 

𝑦2𝑡 − ∆𝑦2 + 𝑦2 + 𝑦1 = 𝑓2(𝑥, 𝑡, 𝑦2, 𝑢2),  ...... (2) 

𝑦1(𝑥, 𝑡) = 0, on Σ  ....................................... (3) 

𝑦1(𝑥, 0) = 𝑦1
0(𝑥), on Ω  ............................... (4) 

𝑦2(𝑥, 𝑡) = 0, on Σ  ....................................... (5) 

𝑦2(𝑥, 0) = 𝑦2
0(𝑥), on Ω  ............................... (6) 

 

where �⃗� = (𝑦1, 𝑦2) ∈ (𝐶2(Q))2 is the state 

vector �⃗⃗� = (𝑢1, 𝑢2) ∈ (𝐿2(Q))2 is the classical 

control vector and (𝑓1, 𝑓2) ∈ (𝐿2(Q))2 is a 

vector of a given function defined on 𝛺 ×  ℝ ×
𝑈1 and Ω ×  ℝ × 𝑈2 respectively with 𝑈1  ⊂ ℝ 
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and 𝑈2  ⊂ ℝ. The controls constraints (the 

control set) are �⃗⃗� ∈ �⃗⃗⃗⃗�, �⃗⃗⃗⃗� ⊂ (𝐿2(Q))
2
. Where 

�⃗⃗⃗⃗� = �⃗⃗⃗⃗��⃗⃗⃗� with �⃗⃗⃗� ⊂ ℝ2 is defined by 

 �⃗⃗⃗⃗��⃗⃗⃗� = {�⃗⃗⃗� ∈ (𝐿2(Q))
2

|�⃗⃗⃗� ∈ �⃗⃗⃗�, a.e. in 𝑄}, 

The cost function is  

𝐺0(�⃗⃗�) = ∫ 𝑔01(𝑥, 𝑡, 𝑦1, 𝑢1)𝑑𝑥𝑑𝑡 +
 

𝑄
  

 ∫ 𝑔02(𝑥, 𝑡, 𝑦2, 𝑢2)𝑑𝑥𝑑𝑡
 

𝑄
  ............................ (7a)  

The equality and inequality constraints are  

𝐺1(�⃗⃗�) = ∫ 𝑔11(𝑥, 𝑡, 𝑦1, 𝑢1)𝑑𝑥𝑑𝑡 +
 

𝑄
  

 ∫ 𝑔12(𝑥, 𝑡, 𝑦2, 𝑢2)𝑑𝑥𝑑𝑡 = 0
 

𝑄
  .................... (7b)  

𝐺2(�⃗⃗�) = ∫ 𝑔21(𝑥, 𝑡, 𝑦1, 𝑢1)𝑑𝑥𝑑𝑡 +
 

𝑄
  

 ∫ 𝑔22(𝑥, 𝑡, 𝑦2, 𝑢2)𝑑𝑥𝑑𝑡
 

𝑄
≤ 0  ..................... (7c) 

The set of admissible control is  

 �⃗⃗⃗⃗�𝐴 = {�⃗⃗� ∈ �⃗⃗⃗⃗�|𝐺1(�⃗⃗�) = 0, 𝐺2(�⃗⃗�) ≤ 0 } 
 

The continuous optimal control problem is 

to minimize the cost functional (7a) subject to 

the constraints (7b&c), i.e. to find �⃗⃗� ∈ �⃗⃗⃗⃗�𝐴such 

that 𝐺0(�⃗⃗�) = 𝐺0(�⃗⃗⃗�)
�⃗⃗⃗�∈�⃗⃗⃗⃗�𝐴

𝑀𝑖𝑛   

Let �⃗⃗� = 𝑉1 × 𝑉2 =  

 {�⃗�: �⃗� ∈ (𝐻1(Ω))
2

, 𝑣1 = 𝑣2 = 0 on 𝜕Ω}, 

 �⃗� = (𝑣1, 𝑣2). We denote by (𝑣, 𝑣) and ‖𝑣‖0 

the inner product and the norm in L2(Ω), by 
(𝑣, 𝑣)1 and ‖𝑣‖1 the inner product and the 

norm in 𝐻1(Ω), by (�⃗�, �⃗�) and ‖�⃗�‖0 the inner 

product and the norm in 𝐿2(Ω) × 𝐿2(Ω)  

by (�⃗�, �⃗�)1 = (𝑣1, 𝑣1)1 + (𝑣2, 𝑣2)1 and  
‖�⃗�‖1 = ‖𝑣1‖1 + ‖𝑣2‖1 the inner product and 

the norm in �⃗⃗� and �⃗⃗�∗ is the dual of �⃗⃗�. 

The weak form of the problem (1-6) when �⃗� ∈
(𝐻0

1(Ω))2is given by   

〈𝑦1𝑡, 𝑣1〉 + (∇𝑦1, ∇𝑣1) + (𝑦1, 𝑣1) − (𝑦2, 𝑣1) =
(𝑓1, 𝑣1), ∀𝑣1 ∈ 𝑉1  ....................................... (8a)  

(𝑦1
0, 𝑣1) = (𝑦1(0), 𝑣1), .............................. (8b)  

〈𝑦2𝑡, 𝑣2〉 + (∇𝑦2, ∇𝑣2) + (𝑦2, 𝑣2) + 
(𝑦1, 𝑣2) = (𝑓2, 𝑣2), ∀𝑣2 ∈ 𝑉2  ..................... (9a)  

(𝑦2
0, 𝑣2) = (𝑦2(0), 𝑣2)  .............................. (9b) 

 

The following assumptions are necessary to 

study the classical optimal control problem: 

Assumptions (A): ∀𝑖 = 1,2, assume that 

i) 𝑓𝑖 is of the Carathéodory type on 𝑄 × (𝑅 ×
𝑅), satisfies the following condition with 

respect to 𝑦𝑖& 𝑢𝑖,i.e. for (𝑥, 𝑡) ∈ 𝑄  

|𝑓𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖)| ≤ 𝜂𝑖(𝑥, 𝑡) + 𝑐𝑖|𝑦𝑖| + �́�𝑖|𝑢𝑖|  
Where 𝑦𝑖, 𝑢𝑖 ∈ 𝑅,𝑐𝑖, �́�𝑖 > 0, 𝜂𝑖 ∈ 𝐿2(𝑄, 𝑅)  

ii) 𝑓𝑖 is satisfied Lipschitz condition with 

respect to 𝑦𝑖, i.e. for (𝑥, 𝑡) ∈ 𝑄 

|𝑓𝑖(𝑥, 𝑡, 𝑦𝑖 , 𝑢𝑖) − 𝑓𝑖(𝑥, 𝑡, �̅�𝑖, 𝑢𝑖)| ≤ 𝐿𝑖|𝑦𝑖 − �̅�𝑖|, 
where 𝑦𝑖 , �̅�𝑖, 𝑢𝑖 ∈ 𝑅 & 𝐿𝑖 > 0. 
 

3. The Solution of the State Equations 
In this section the existence theorem of a 

unique solution of the coupled of nonlinear 

partial differential equations of parabolic type 

under a suitable assumption is proved when 

the control vector is given. 
 

Proposition 3.1 [Chryssovergh, 2003]:  

Suppose 𝐷 be a measurable subset of ℝ𝒅 (𝑑 =
2,3), 𝑓: 𝐷 × ℝ𝑛 ⟶ ℝ𝑚 is of Carathéodory 

type satisfies‖𝑓(𝑣, 𝑥)‖ ≤ 𝜉(𝑣) + 𝜂(𝑣)‖𝑥‖𝛼, 

for each (𝑣, 𝑥) ∈ 𝐷 × ℝ𝑛, where 𝑥 ∈

𝐿𝑝(𝐷, ℝ𝑛), 𝜉 ∈ 𝐿1(𝐷, 𝑅), 𝜂 ∈ 𝐿
𝑝

𝑃−𝛼(𝐷, 𝑅),𝛼 ∈
[0, 𝑝], if 𝑝 ≠ ∞, 𝜂 = 0 if 𝑝 = ∞. Then the 

functional 𝐹(𝑥) = ∫ 𝑓(𝑣, 𝑥(𝑣))𝑑𝑣
 

 𝐷
 is 

continuous. 
 

Theorem 3.1: (Existence and Uniqueness of 

Solution of the State Equations):  

With assumptions (A), for each fixed �⃗⃗� ∈

(𝐿2(𝑄))
2
, the weak form (8-9) of the state 

equations has a unique solution �⃗� =

(𝑦1, 𝑦2), �⃗�𝑡 = (𝑦1𝑡, 𝑦2𝑡), �⃗� ∈ (𝐿2(𝐼, 𝑉))
2
, 

�⃗�𝑡 ∈ (𝐿2(𝐼, 𝑉∗))
2
. 

 

Proof:  

Let 𝑉𝑛 ⊂ 𝑉 be the set of continuous and 

piecewise affine function in Ω. Let  

�⃗�𝑛 = (𝑣1𝑛, 𝑣2𝑛) with 𝑣𝑖𝑛 ∈ 𝑉𝑛, ∀𝑖 = 1,2 and 

�⃗�𝑛 = (𝑦1𝑛, 𝑦2𝑛), ∀𝑛 

 𝑦1𝑛 = ∑ 𝑐1𝑗
𝑛
𝑗=1 (𝑡)𝑣1𝑗(𝑥)  ......................... (10) 

& 𝑦2𝑛 = ∑ 𝑐2𝑗(𝑡)𝑣2𝑗(𝑥)𝑛
𝑗=1   ...................... (11)  

 

where 𝑐𝑖𝑗(𝑡) is unknown function of t, for  

each = 1,2, 𝑗 = 1,2, … , 𝑛. 

The weak forms of the state equations (8-9) 

are approximated w.r.t. 𝑥 using the Galerkin’s 

method, hence they become  

〈𝑦1𝑛𝑡, 𝑣1〉 + (∇𝑦1𝑛, ∇𝑣1) + (𝑦1𝑛, 𝑣1) −
(𝑦2, 𝑣1) = (𝑓1(𝑦1𝑛, 𝑢1), 𝑣1), ∀𝑣1 ∈ 𝑉𝑛  ..... (12a) 

(𝑦1𝑛
0 , 𝑣1) = (𝑦1

0, 𝑣1), ∀𝑣1 ∈ 𝑉𝑛  ............... (12b)  

〈𝑦2𝑛𝑡, 𝑣2〉 + (∇𝑦2𝑛, ∇𝑣2) + (𝑦2𝑛, 𝑣2) +
(𝑦1, 𝑣2) = (𝑓2(𝑦2𝑛, 𝑢2), 𝑣2), ∀ 𝑣2 ∈ 𝑉𝑛  ... (13a) 

(𝑦2𝑛
0 , 𝑣2) = (𝑦2

0, 𝑣2), ∀ 𝑣2 ∈ 𝑉𝑛  .............. (13b) 
 

where 𝑦𝑖𝑛
0 = 𝑦𝑖𝑛

0 (𝑥) = 𝑦𝑖𝑛(𝑥, 0) ∈ 𝑉𝑛 is the 

projection of 𝑦𝑖
0 ∈ 𝐿2(Ω), i.e.,∀𝑖 = 1,2  
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 (𝑦𝑖𝑛
0 , 𝑣𝑖) = (𝑦𝑖

0, 𝑣𝑖) ∀ 𝑣𝑖 ∈ 𝑉𝑛 ⇔

 ‖𝑦𝑖𝑛
0 − 𝑦𝑖

0‖
0

≤ ‖𝑦𝑖
0 − 𝑣𝑖‖0

, ∀𝑣𝑖 ∈ 𝑉𝑛.  

 

Substituting (10) in (12 a& b) and (11) in  

(13 a & b) respectively and setting 𝑣1 = 𝑣1𝑖, 

𝑣2 = 𝑣2𝑖, the obtained equations are 

equivalent to the following 1st order nonlinear 

system of ordinary differential equations with 

their initial conditions which has a unique 

solution 𝑦1𝑛&𝑦2𝑛 [Brauer, 1973]: 

 

𝐴𝐶1
´ (𝑡) + 𝐷𝐶1(𝑡) − 𝐸𝐶2(𝑡) = 𝑏1 (�̅�1

𝑇𝑐1(𝑡))  

𝐴𝐶1(0) = 𝑏1
0  

𝐵𝐶2
´ (𝑡) + 𝐹𝐶2(𝑡) + 𝐻𝐶1(𝑡)  = 𝑏2 (�̅�2

𝑇𝑐2(𝑡))  

𝐵𝐶2(0) = 𝑏2
0  

where, 𝐶𝑙(𝑡) = (𝑐𝑙𝑗(𝑡))
𝑛×1

,, 𝐶𝑙
´(𝑡) =

 (𝑐𝑙𝑗
´ (𝑡))

𝑛×1
,  𝐶𝑙(0) = (𝑐𝑙𝑗(0))

𝑛×1
,  

𝑏𝑙 = (𝑏𝑙𝑖)𝑛×1, 𝑏𝑙𝑖 = (𝑓𝑙(𝑉𝑙
𝑇𝑐𝑙(𝑡), 𝑢𝑙), 𝑣𝑙𝑖), 

𝑏𝑙
0 = (𝑏𝑙𝑗

0 ), 𝑏𝑙𝑗
0 = (𝑦𝑙

0, 𝑣𝑙𝑗), ∀𝑙 = 1,2, 𝐴 =

(𝑎𝑖𝑗)
𝑛×𝑛

, 𝑎𝑖𝑗 = (𝑣1𝑗 , 𝑣1𝑖), 𝐸 = (𝑒𝑖𝑗)
𝑛×𝑛

, 

𝑒𝑖𝑗 = (𝑣2𝑗 , 𝑣1𝑖), 𝐵 = (𝑏𝑖𝑗)
𝑛×𝑛

,  

𝑏𝑖𝑗 = (𝑣2𝑗 , 𝑣2𝑖),  𝐷 = (𝑑𝑖𝑗)
𝑛×𝑛

,  

𝑑𝑖𝑗 = [(∇𝑣1𝑗, ∇𝑣1𝑖) + (𝑣1𝑗 , 𝑣1𝑖)],  

𝐹 = (𝑓𝑖𝑗)
𝑛×𝑛

, 𝑓𝑖𝑗 = [(∇𝑣2𝑗, ∇𝑣2𝑖) +

(𝑣2𝑗 , 𝑣2𝑖)], and 𝐻 = (ℎ𝑖𝑗)
𝑛×𝑛

,  

ℎ𝑖𝑗 = (𝑣1𝑖, 𝑣2𝑖).  

 

Now, to show the norm ‖�⃗⃗⃗�𝒏
𝟎‖

𝟎
 is bounded: 

Since �⃗�0 ∈ (𝐿2(Ω))2, then there exists {�⃗�𝑛
0}, 

with �⃗�𝑛
0 ∈ �⃗⃗�𝑛 such that �⃗�𝑛

0 ⟶ �⃗�0 strongly in 

(𝐿2(Ω))2 then from the projection theorem and 

(12b&13b) one obtain that �⃗�𝑛
0 ⟶ �⃗�0  

strongly in (𝐿2(Ω))2with ‖�⃗�𝑛
0‖𝟎 ≤  𝑏1 

 

The norms ‖�⃗⃗⃗�𝒏(𝒕)‖
𝑳∞(𝑰,𝑳𝟐(Ω))

 and ‖�⃗⃗⃗�𝒏(𝒕)‖𝑸 

are bounded: Setting 𝑣1 = 𝑦1𝑛 and 𝑣2 = 𝑦2𝑛 

in (12a) & (13a) respectively, integrating from 

0 to 𝑇, adding the two obtained equations one 

get  

∫ 〈�⃗�𝑛𝑡, �⃗�1𝑛〉𝑑𝑡 + ∫ ‖�⃗�𝑛‖1
2𝑑𝑡 =

𝑇

0

𝑇

0
  

∫ [(𝑓1(𝑦1𝑛, 𝑢1), 𝑦1𝑛) +
𝑇

0
(𝑓2(𝑦2𝑛, 𝑢2), 𝑦2𝑛)]𝑑𝑡  

  .................................. (14)  
 

Since the 2nd term of L.H.S. of (14) is positive, 

then using Lemma 1.2 in [Temam, 1977] for 

the 1st term of it, taking 𝑇 = 𝑡 ∈ [0, 𝑇], finally 

applying assumptions(A-i) for the R.H.S. of 

(14), i.e. 

∫ 𝑑
𝑑𝑡

‖�⃗⃗�𝑛(𝑡)‖0
2

𝑡

0
𝑑𝑡  

≤ ∫ ∫ (𝜂1
2 + |𝑦1𝑛|2)

 

Ω

𝑡

0
𝑑𝑥𝑑𝑡 +  

 2 ∫ ∫ 𝑐1|𝑦1𝑛|2 

Ω

𝑡

0
𝑑𝑥𝑑𝑡 +  

 ∫ ∫ (�́�1|𝑢1|2 

Ω

𝑡

0
+ |𝑦1𝑛|2)𝑑𝑥𝑑𝑡 +  

 ∫ ∫ (𝜂2
2 + |𝑦2𝑛|2)

 

Ω

𝑡

0
𝑑𝑥𝑑𝑡 +  

 2∫ ∫ 𝑐2|𝑦2𝑛|2 

Ω

𝑡

0
𝑑𝑥𝑑𝑡 + 

 ∫ ∫ (�́�2|𝑢2|2 + |𝑦2𝑛|2 

Ω

𝑡

0
)𝑑𝑥𝑑𝑡,  .................. (15)  

 

Since ‖𝜂𝑖‖𝑄
 ≤ �́�𝑖, ‖𝑢𝑖‖𝑄

 ≤ 𝑐𝑖1, ∀𝑖 = 1,2 and 

‖�⃗�𝑛(0)‖0
2 ≤ 𝑏, then (15) becomes ‖�⃗�𝑛(𝑡)‖0

2 ≤

𝑐∗ + 𝑐5 ∫ ‖�⃗�𝑛‖0
2𝑡

0
𝑑𝑡,  

 

where 𝑐∗ = 𝑏 +𝑏1
´ + 𝑏2

´ + �́�1𝑐11 + �́�1�́�12, 

𝑐5 = 2 + 𝑐3 + 𝑐4, with 𝑐3 = 2𝑐1, 𝑐4 = 2𝑐2. 
Using Belman- Gronwall inequality, to get  

‖�⃗�𝑛(𝑡)‖𝟎
2 ≤ 𝑐∗𝑒𝑐5 = 𝑏2(𝑐), ∀ 𝑡 ∈ [0, 𝑇], easily 

the following are obtained  

‖�⃗�𝑛(𝑡)‖
𝐿∞(𝐼,𝐿2(Ω))

≤ 𝑏(𝑐), and ‖�⃗�𝑛(𝑡)‖𝑸 ≤

𝑏1(𝑐). 

 

The norm ‖�⃗⃗⃗�𝒏(𝒕)‖𝑳𝟐(𝑰,𝑽) is bounded:  

Again using the same above steps in (14), 

but with 𝑡 = 𝑇, and ‖�⃗�𝑛(𝑇)‖𝟎
2 is positive, one 

easily obtain that  

 ‖�⃗�𝑛‖𝑳𝟐(𝐼,𝑉) = ∫ ‖�⃗�𝑛‖𝟏
2𝑇

0
𝑑𝑡 ≤  𝑏2

2(𝑐),  

where 𝑏2
2(𝑐) =

(𝑏+𝑏1
´ +𝑏2

´ +�́�1𝑐1+�́�2𝑐2+𝑐5𝑏1(𝑐))

2
 

 

The convergence of the solution:  

Let {�⃗⃗�𝑛}
𝑛=1

∞
 be a sequence of subspaces of 

�⃗⃗�, such that ∀ �⃗� = (𝑣1, 𝑣2) ∈  �⃗⃗�, there exists a 

sequence {�⃗�𝑛} with �⃗�𝑛 = (𝑣1𝑛, 𝑣2𝑛) ∈ �⃗⃗�𝑛, ∀𝑛, 

and �⃗�𝑛  ⟶ �⃗� strongly in �⃗⃗� ⇒  �⃗�𝑛  ⟶ �⃗� 

strongly in (𝐿2(Ω))
2
. Then corresponding to 

the sequence {�⃗⃗�𝑛}
𝑛=1

∞
, one obtain a sequence of 

approximation problems like (12 a & b) and 

(13 a &b), but with �⃗� = �⃗�𝑛 = (𝑣1𝑛, 𝑣2𝑛) for 

𝑛 = 1,2, …, and 𝑦1𝑛, 𝑦2𝑛 ∈ 𝐿2(𝐼, 𝑉𝑛) a.e. in 

𝐼, i.e 

〈𝑦1𝑛𝑡, 𝑣1𝑛〉 + (∇𝑦1𝑛, ∇𝑣1𝑛) + (𝑦1𝑛, 𝑣1𝑛) −
(𝑦2𝑛, 𝑣1𝑛) = (𝑓1(𝑦1𝑛, 𝑢1), 𝑣1𝑛),  ............... (16a) 

(𝑦1𝑛
0 , 𝑣1𝑛) = (𝑦1

0, 𝑣1𝑛),  ........................... (16b)  

& 〈𝑦2𝑛𝑡, 𝑣2𝑛〉 + (∇𝑦2𝑛, ∇𝑣2𝑛) + (𝑦2𝑛, 𝑣2𝑛) 

 +(𝑦1𝑛, 𝑣2𝑛) = (𝑓2(𝑦2𝑛, 𝑢2), 𝑣2𝑛),  .......... (17a) 
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(𝑦2𝑛
0 , 𝑣2𝑛) = (𝑦2

0, 𝑣2𝑛),  ........................... (17b)  
 

which has a sequence of solutions {�⃗�𝑛}𝑛=1
∞ , 

where  �⃗�𝑛 = (𝑦1𝑛, 𝑦2𝑛). 

Since ‖�⃗�𝑛‖𝑳𝟐(𝑄) and ‖�⃗�𝑛‖𝑳𝟐(𝐼,𝑽) are bounded, 

then by Alaoglu’s theorem, there exists  

a subsequence of {�⃗�𝑛}𝑛∈𝑁, say again 

{�⃗�𝑛}𝑛∈𝑁such that �⃗�𝑛 ⟶  �⃗� weakly in (𝐿2(𝑄))
2
 

and weakly in (𝐿2(𝐼, 𝑉))
2
. In this point, it is 

required to show that the norm ‖�⃗�𝑘𝑡‖𝑳𝟐(𝐼,𝑽∗)is 

bounded, but this will be left here and will be 

shown in section 4, so assume it is bounded, 

and since  

(𝐿2(𝑅, 𝑉  ))
2

⊂ (𝐿2(𝑅, Ω))
2

≅

((𝐿2(𝑅, Ω))
∗
)2 ⊂ (𝐿2(𝑅, 𝑉∗))

2
  ................ (18)  

 

Which means the injection of (𝐿2(𝑅, 𝑉  ))
2
 in 

to (𝐿2(𝑅, Ω))
2
, and of ((𝐿2(𝑅, Ω))

∗
)

2
 in to 

(𝐿2(𝑅, 𝑉∗))
2
 are continuous, the injection of 

(𝐿2(𝑅, 𝑉  ))
2
 in to (𝐿2(𝑄))

2
 is compact, on the 

other hand from assumptions (A), the Cauchy-

Schwartz inequality, Fourier transform and its 

inverse and finally the Parseval theorem, the 

compactness theorem [Temam, 1977] can be 

applied to get that there exists a subsequence 

of {�⃗�𝑘} say again {�⃗�𝑘} such 

that �⃗�𝑘 ⟶�⃗�  strongly in (𝐿2(𝑄))
2
.  

Now, multiplying both sides of (16a) and (17a) 

by 𝜑𝑖(𝑡) ∈ 𝐶1[0, 𝑇], such that  

𝜑𝑖(𝑇) = 0, ∀𝑖 = 1,2, taking the integra from 0 

to 𝑇, finally using integration by parts for the 

1st term of each one of the obtained equation, 

yield  

 − ∫ (𝑦1𝑛, 𝑣1𝑛)𝜑1
´ (𝑡)𝑑𝑡 +

𝑇

0
  

 ∫ [
𝑇

0
(∇𝑦1𝑛, ∇𝑣1𝑛)𝜑1(𝑡) + (𝑦1𝑛, 𝑣1𝑛)𝜑1(𝑡)  

 −(𝑦2𝑛, 𝑣1𝑛)𝜑1(𝑡)]𝑑𝑡 =  

 ∫  
𝑇

0
(𝑓1(𝑦1𝑛, 𝑢1), 𝑣1𝑛)𝜑1(𝑡)𝑑𝑡 +  

 (𝑦1𝑛
0 , 𝑣1𝑛)𝜑1(0),  ...................................... (19)  

& − ∫ (𝑦2𝑛, 𝑣2𝑛)𝜑2
´ (𝑡)𝑑𝑡

𝑇

0
 

+ ∫ [
𝑇

0
(∇𝑦2𝑛, ∇𝑣2𝑛)𝜑2(𝑡) +

(𝑦2𝑛, 𝑣2𝑛)𝜑2(𝑡)  + (𝑦1𝑛, 𝑣2𝑛)𝜑2(𝑡)]𝑑𝑡 =  

 ∫ (𝑓2(𝑦2𝑛, 𝑢2), 𝑣2𝑛)𝜑2(𝑡)𝑑𝑡 
𝑇

0
  

 +(𝑦2𝑛
0 , 𝑣2𝑛)𝜑2(0)  .................................... (20) 

 

Since ∀𝑖 = 1,2 the following converges hold 

𝑣𝑖𝑛 ⟶ 𝑣𝑖  strongly in 𝑉 

 𝑣𝑖𝑛 ⟶ 𝑣𝑖  strongly in 𝐿2(Ω)
 } ⟹ 

{
 𝑣𝑖𝑛𝜑𝑖 ⟶ 𝑣𝑖𝜑𝑖 strongly in 𝐿2(𝐼, 𝑉)

𝑣𝑖𝑛𝜑𝑖
´ ⟶ 𝑣𝑖𝜑𝑖

´  strongly in 𝐿2(𝑄)
 

𝑦𝑖𝑛 ⟶ 𝑦𝑖 weakly in 𝐿2(𝑄) & in 𝐿2(𝐼, 𝑉) and 

𝑦𝑖𝑛
0 ⟶ 𝑦𝑖

0, strongly in 𝐿2(Ω), then 

 ∫ (𝑦1𝑛, 𝑣1𝑛)𝜑1
´ (𝑡)𝑑𝑡 +

𝑇

0
  

∫ [
𝑇

0
(∇𝑦1𝑛, ∇𝑣1𝑛)𝜑1(𝑡) + (𝑦1𝑛, 𝑣1𝑛)𝜑1(𝑡)  

−(𝑦2𝑛, 𝑣1𝑛)𝜑1(𝑡)]𝑑𝑡 ⟶ ∫ (𝑦1, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 +

𝑇

0

∫ [
𝑇

0
(∇𝑦1, ∇𝑣1)𝜑1(𝑡) +  

 (𝑦1, 𝑣1)𝜑1(𝑡) − (𝑦2, 𝑣1)𝜑1(𝑡)]𝑑𝑡  .......... (21a) 

(𝑦1𝑛
0 , 𝑣1𝑛)𝜑1(0) → (𝑦1

0, 𝑣1)𝜑1(0)  .......... (21b) 

& ∫ (𝑦2𝑛, 𝑣2𝑛)𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0
  

∫ [
𝑇

0
(∇𝑦2𝑛, ∇𝑣2𝑛)𝜑2(𝑡) + (𝑦2𝑛, 𝑣2𝑛)𝜑2(𝑡) +  

 (𝑦1𝑛, 𝑣2𝑛)𝜑2(𝑡)]𝑑𝑡 ⟶  

∫ (𝑦2, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0
∫ [

𝑇

0
(∇𝑦2, ∇𝑣2)𝜑2(𝑡) +  

(𝑦2, 𝑣2)𝜑2(𝑡) + (𝑦1, 𝑣2)𝜑2(𝑡)]𝑑𝑡  ........... (22a) 

(𝑦2𝑛
0 , 𝑣2𝑛)𝜑2(0) ⟶ (𝑦2

0, 𝑣2)𝜑2(0)  ........ (22b) 

 

On the other hand, let 𝑤𝑖𝑛 = 𝑣𝑖𝑛𝜑𝑖 and 𝑤𝑖 =
𝑣𝑖𝜑𝑖 then ∀𝑖 = 1,2, 𝑤𝑖𝑛 ⟶ 𝑤𝑖 strongly in 

𝐿2(𝑄) and then 𝑤𝑖𝑛 is measurable w.r.t. (𝑥, 𝑡), 

using assumption (A-i), then applying 

Proposition 1.3, the integral 

∫ 𝑓𝑖(𝑥, 𝑡, 𝑦𝑖𝑛, 𝑢𝑖)𝑤𝑖𝑛𝑑𝑥𝑑𝑡
 

𝑄
 is continuous w.r.t. 

(𝑦𝑖𝑛, 𝑢𝑖 , 𝑤𝑖𝑛), but 𝑦𝑖𝑛 ⟶ 𝑦𝑖strongly in 𝐿2(𝑄), 

then ∀𝑖 = 1,2  

∫ (𝑓𝑖(𝑦𝑖𝑛, 𝑢𝑖), 𝑣𝑖𝑛)𝜑𝑖(𝑡)𝑑𝑡
𝑇

0

→ 

∫ (𝑓𝑖(𝑦𝑖, 𝑢𝑖), 𝑣𝑖)𝜑𝑖(𝑡)𝑑𝑡
𝑇

0
 (21c)  

From (21a,b &c) and (22a&b) then (19) and 

(20) become respectively  

− ∫ (𝑦1, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 +

𝑇

0
 ∫ [

𝑇

0
(∇𝑦1, ∇𝑣1)𝜑1(𝑡)  

 +(𝑦1, 𝑣1)𝜑1(𝑡) − (𝑦2, 𝑣1)𝜑1(𝑡)]𝑑𝑡 =  

 ∫ (𝑓1(𝑦1, 𝑢1), 𝑣1)𝜑1(𝑡)𝑑𝑡
𝑇

0
+ (𝑦1

0, 𝑣1)𝜑1(0)  

  ................................. (23) 

&∫ (𝑦2, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0
∫ [

𝑇

0
(∇𝑦2, ∇𝑣2)𝜑2(𝑡)  

 +(𝑦2, 𝑣2)𝜑2(𝑡) + (𝑦1, 𝑣2)𝜑2(𝑡)]𝑑𝑡 =  

∫ (𝑓2(𝑦2, 𝑢2), 𝑣2)𝜑2(𝑡)𝑑𝑡
𝑇

0
+ (𝑦2

0, 𝑣2)𝜑2(0)  

  ................................. (24) 
 

Case1:  

Choose𝜑𝑖 ∈ 𝐷[0, 𝑇], i.e.,𝜑𝑖(0) = 𝜑𝑖(𝑇) = 0, 

∀𝑖 = 1,2, substituting in (23) and (24), and 

integration by parts for the 1𝑠𝑡 terms in the 

L.H.S. of each one of the obtained equation, 

yield 
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 ∫ 〈𝑦1𝑡, 𝑣1〉𝜑1(𝑡)𝑑𝑡 + ∫ [
𝑇

0
(∇𝑦1, ∇𝑣1)𝜑1(𝑡) 

𝑇

0
  

 +(𝑦1, 𝑣1)𝜑1(𝑡) − (𝑦2, 𝑣1)𝜑1(𝑡)]𝑑𝑡  

= ∫ (𝑓1(𝑦1, 𝑢1), 𝑣1)𝜑1(𝑡)𝑑𝑡
𝑇

0
 (25) 

∫ 〈𝑦2𝑡, 𝑣2〉𝜑2(𝑡)𝑑𝑡 + ∫ [
𝑇

0

(∇𝑦2, ∇𝑣2)𝜑2(𝑡)
𝑇

0

 

+ (𝑦2, 𝑣2)𝜑2(𝑡)
+ (𝑦1, 𝑣2)𝜑2(𝑡)]𝑑𝑡 

= ∫ (𝑓2(𝑦2, 𝑢2), 𝑣2)𝜑2(𝑡)𝑑𝑡
𝑇

0
  .................... (26) 

 

which give that 𝑦1 & 𝑦2are solutions of (8a) 

and (9a) respectively (a.e. on 𝐼) 

 

Case2:  

Choose 𝜑𝑖 ∈ 𝐶1[0, 𝑇], such that 𝜑𝑖(𝑇) =
0 & 𝜑𝑖(0) ≠ 0, ∀𝑖 = 1,2. Using integration by 

parts for 1𝑠𝑡 term in the L.H.S. of (25) & (26), 

subtracting (23) & (24) from the equations 

which are obtained from (25) & (26) 

respectively, one get  

 (𝑦𝑖
0, 𝑣𝑖)𝜑1(0) = (𝑦𝑖(0), 𝑣𝑖)𝜑1(0),  .......... (27) 

 

which give the i. cs. (8b)& (9b) are hold. 

 

The strong convergence for �⃗⃗⃗�𝒏 :  

Let 𝑎𝑖(𝑦𝑖𝑛, 𝑦𝑖𝑛) = (∇𝑦𝑖𝑛, ∇𝑦𝑖𝑛) + (𝑦𝑖𝑛, 𝑦𝑖𝑛) 
 .............................. (28) 

and 

𝑎(�⃗�𝑛, �⃗�𝑛) = 𝑎1(𝑦1𝑛, 𝑦1𝑛) + 𝑎2(𝑦2𝑛, 𝑦2𝑛) .. (29) 

 

For each 𝑖 = 1,2 Substituting 𝑣1 = 𝑦1𝑛 and 

𝑣2 = 𝑦2𝑛in (12a) and (13a) respectively, 

integrating both sides of the above two 

obtained equations from 0 to 𝑇, then adding 

both of them, one has  

 

∫ 〈�⃗�𝑛𝑡 , �⃗�𝑛〉
𝑇

0

 𝑑𝑡 + ∫ 𝑎(�⃗�𝑛, �⃗�𝑛)𝑑𝑡 =
𝑇

0

 

 ∫ [(𝑓1(𝑦1𝑛, 𝑢1), 𝑦1𝑛)
𝑇

0
𝑑𝑡 

+ ∫ (𝑓2(𝑦2𝑛, 𝑢2), 𝑦2𝑛)
𝑇

0
𝑑𝑡  ........................ (30a) 

 

Also, the same above steps are repeated but 

with substituting 𝑣1 = 𝑦1 and 𝑣2 = 𝑦2 in (8a) 

and (9a) respectively, to get 

 ∫ 〈�⃗�𝑡, �⃗�〉
𝑇

0
 𝑑𝑡 + ∫ 𝑎(�⃗�, �⃗�)𝑑𝑡 =

𝑇

0
 

∫ [(𝑓1(𝑦1, 𝑢1), 𝑦1) + (𝑓2(𝑦2, 𝑢2), 𝑦2)]𝑑𝑡
𝑇

0
  

 ................................. (30b)  

 

Again, using Lemma 1.2 in [Temam, 1977], 

the 1𝑠𝑡 terms in the L.H.S. of (30a&b), yield  

 1

2
‖�⃗�𝑛(𝑇)‖0

2 − 1

2
‖�⃗�𝑛(0)‖0

2 + ∫ 𝑎(�⃗�𝑛, �⃗�𝑛)𝑑𝑡
𝑇

0
  

= ∫ (𝑓1(𝑦1𝑛, 𝑢1), 𝑦1𝑛)𝑑𝑡
𝑇

0
  

 + ∫ (𝑓2(𝑦2𝑛, 𝑢2), 𝑦2𝑛)𝑑𝑡
𝑇

0
  ........................ (31a) 

 
1

2
‖�⃗�(𝑇)‖0

2 −
1

2
‖�⃗�(0)‖0

2 + ∫ 𝑎(�⃗�, �⃗�)𝑑𝑡 =
𝑇

0

  

∫ [(𝑓1(𝑦1, 𝑢1), 𝑦1) + (𝑓2(𝑦2, 𝑢2), 𝑦2)]
𝑇

0
𝑑𝑡  

 ................................ (31b)  

Since  

 1

2
‖�⃗�𝑛(𝑇) − �⃗�(𝑇)‖0

2 − 1

2
‖�⃗�𝑛(0) − �⃗�(0)‖0

2  +

∫ 𝑎(�⃗�𝑛 − �⃗�, �⃗�𝑛 − �⃗�)
𝑇

0
𝑑𝑡 

= (32a) − (32b) − (32c) (32)  

 

where  

(32a)=  1

2
‖�⃗�𝑛(𝑇)‖0

2 − 1

2
‖�⃗�𝑛(0)‖0

2  

 + ∫ 𝑎(�⃗�𝑛(𝑡), �⃗�𝑛(𝑡))𝑑𝑡
𝑇

0
  

(32b)= 1

2
(�⃗�𝑛(𝑇), �⃗�(𝑇)) − 1

2
(�⃗�𝑛(0), �⃗�(0)) +  

 ∫ 𝑎(�⃗�𝑛(𝑡), �⃗�(𝑡))
𝑇

0
𝑑𝑡, and 

 (32c)= 1

2
(�⃗�(𝑇), �⃗�𝑛(𝑇) − �⃗�(𝑇)) − 

 1

2
(�⃗�(0), �⃗�𝑛(0) − 𝑦(0)) + 

 ∫ 𝑎(�⃗�(𝑡), �⃗�𝑛(𝑡) − �⃗�(𝑡))
𝑇

0
  

 

Since �⃗�𝑛
0 = �⃗�𝑛(0), & �⃗�0 = �⃗�(0), then  

 
�⃗�𝑛(0) ⟶ �⃗�(0) strongly in(𝐿2(Ω))

2

�⃗�𝑛(𝑇) ⟶ �⃗�(𝑇)strongly in(𝐿2(Ω))
2  }  ... (33a) 

(�⃗�(0), �⃗�𝑛(0) − �⃗�(0)) → 0

 (�⃗�(𝑇), �⃗�𝑛(𝑇) − �⃗�(𝑇)) → 0
}  .................. (33b) 

and 
 ‖�⃗�𝑛(0) − �⃗�(0)‖0

2 → 0

 ‖�⃗�𝑛(𝑇) − �⃗�(𝑇)‖0
2 → 0

} .................... (33c) 

 

But �⃗�𝑛 ⟶ �⃗� weakly in (𝐿2(𝐼, 𝑉))
2
, then 

 ∫ �⃗�(�⃗�(𝑡), �⃗�𝑛(𝑡) − �⃗�(𝑡))𝑑𝑡
𝑇

0
→ 0 ...........  (33d)  

 

Since the integral ∫ (𝑓𝑖(𝑦𝑖𝑛, 𝑢𝑖), 𝑦𝑖𝑛)
𝑇

0
𝑑𝑡 is 

continuous w.r.t. 𝑦𝑖 & 𝑢𝑖 ∀𝑖 = 1,2 and �⃗�𝑛

⟶ �⃗�, strongly in (𝐿2(𝑄))
2
, one get that  

∫ [(𝑓1(𝑦1𝑛, 𝑢1), 𝑦1𝑛) +
𝑇

0

(𝑓2(𝑦2𝑛, 𝑢2), 𝑦2𝑛)] 𝑑𝑡 → ∫ [(𝑓1(𝑦1, 𝑢1), 𝑦1) +
𝑇

0

(𝑓2(𝑦2, 𝑢2), 𝑦2)]𝑑𝑡   .................................. (33e) 

 

Now, when 𝑛 → ∞ in both sides of (32), one 

have the following results: 

(1)The first two terms in the L.H.S. of (32) are 

tending to zero (from 33c) 

(2) from (31a), Eq.(32a)= 
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 ∫ [(𝑓1(𝑦1𝑛, 𝑢1), 𝑦1𝑛) + (𝑓2(𝑦2𝑛, 𝑢2), 𝑦2𝑛)]
𝑇

0
𝑑𝑡 

→ ∫ [(𝑓1(𝑦1, 𝑢1), 𝑦1) + (𝑓2(𝑦2, 𝑢2), 𝑦2)]
𝑇

0
𝑑𝑡  

(3) Eq.(32b) → L.H.S. of (31b) =

∫ [(𝑓1(𝑦1, 𝑢1), 𝑦1) + (𝑓2(𝑦2, 𝑢2), 𝑦2)]
𝑇

0
𝑑𝑡 

(4) The 1𝑠𝑡 two terms in (32c) are tending to 

zero (from (33b)), and the last one term also 

is tended to zero (from (33d)).  

 

Now, substituting these results in (32) with 𝑛 

tends to ∞, gives 

∫ ‖�⃗�𝑛 − �⃗�‖1
2𝑇

0
𝑑𝑡 = ∫ 𝑎(�⃗�𝑛 − �⃗�, �⃗�𝑛 − �⃗�)𝑑𝑡

𝑇

0

→ 0  

⇒  �⃗�𝑛 ⟶ �⃗� strongly in (𝐿2(𝐼, 𝑉))
2
. 

 

Uniqueness of the Solution:  

Let �⃗� = (𝑦1, 𝑦2) and �⃗̅� = (�̅�1, �̅�2) are two 

solutions of the weak form (8a-9a), i.e. 𝑦1 and 

�̅�1 are satisfied the weak form (8a), subtracting 

each equation from the other and then setting 

𝑣1 = 𝑦1 − �̅�1, yields to 

 〈(𝑦1 − �̅�1)𝑡, 𝑦1 − �̅�1〉 + ‖𝑦1 − �̅�1‖1
2 = 

 (𝑓1(𝑦1, 𝑢1) − 𝑓1(�̅�1, 𝑢1), 𝑦1 − �̅�1)  
 

The same thing, for 𝑦2 and �̅�2, one have that 

〈(𝑦2 − �̅�2)𝑡, 𝑦2 − �̅�2〉 + ‖𝑦2 − �̅�2‖1
2 =  

 (𝑓2(𝑦2, 𝑢2) − 𝑓2(�̅�2, 𝑢2), 𝑦2 − �̅�2) 

 

Adding the above two equations, since the 2𝑛𝑑 

term of the L.H.S. of the obtained equation is 

positive, using Lemma 1.2 in ref. [Temam, 

1977] for the remained 1𝑠𝑡in L.H.S., 

integrating both sides from 0 to 𝑡, applying the 

Lipshctiz property on the R.H.S., and finally 

the Bellamn-Gronwal inequality, gives 

 ‖(�⃗� − �⃗̅�)(𝑡)‖
0

2
= 0, ∀𝑡 ∈ 𝐼. 

 

Now, repeating the above steps but with 

keeping the 2𝑛𝑑term of the L.H.S. and 

integrating from 0 to 𝑇, using the initial 

condition, one have ∫  ‖�⃗� − �⃗̅�‖
1

2𝑇

0
𝑑𝑡 ≤

𝐿 ∫  ‖�⃗� − �⃗̅�‖
0

2𝑇

0
𝑑𝑡 ≤ 0  

⇒  ‖�⃗� − �⃗̅�‖
𝐿2(𝐼,𝑉)

= 0 ⇒ �⃗� = �⃗̅�  

 

Lemma 3.1:  

(a) In addition to assumptions (A), if �⃗� and 

�⃗� + 𝛿𝑦⃗⃗⃗⃗⃗ are the states vectors corresponding to 

the controls vectors �⃗⃗� ∈ (𝐿2(𝑄))2 and �⃗⃗� +

𝛿𝑢⃗⃗⃗⃗⃗ ∈ (𝐿2(𝑄))2, then ‖𝛿𝑦⃗⃗⃗⃗⃗‖
𝐿∞(𝐼,𝐿2(Ω))

≤

𝑀‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

, 

‖𝛿𝑦⃗⃗⃗⃗⃗‖
𝐿2(𝑄)

≤ 𝑀‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

& ‖𝛿𝑦⃗⃗⃗⃗⃗‖
𝐿2(𝐼,𝑉)

≤

𝑀‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

  

(b) In addition to assumptions (A), the 

operator �⃗⃗� ⟼ �⃗��⃗⃗⃗� from (𝐿2(𝑄))2 into 

(𝐿∞(𝐼, 𝐿2(Ω))) 2 or in to (𝐿2(𝐼, 𝑉))2 or in to 

(𝐿2(𝑄))2 is continuous. 

 

Proof:  

(a) Let�⃗⃗� = (𝑢1, 𝑢2),�⃗⃗̅� = (�̅�1, �̅�2) ∈ (𝐿2(𝑄))2 

then by theorem 3.1, there exist their 

corresponding states solutions  

�⃗� = (𝑦1, 𝑦2), �⃗̅� = (�̅�1, �̅�2), which are satisfied 

the weak forms (8 a& b) and (9 a& b) 

respectively, setting 𝛿𝑦1 = �̅�1 − 𝑦1, 𝛿𝑦2 =
�̅�2 − 𝑦2, 𝛿𝑢1 = �̅�1 − 𝑢1 & 𝛿𝑢2 = �̅�2 − 𝑢2, 

once get 

〈𝛿𝑦1𝑡, 𝑣1〉 + (∇δ𝑦1, ∇𝑣1) + (𝛿𝑦1, 𝑣1) −
(𝛿𝑦2, 𝑣1) = (𝑓1(𝑦1 + 𝛿𝑦1, 𝑢1 + 𝛿𝑢1), 𝑣1)  

 −(𝑓1(𝑦1, 𝑢1), 𝑣1) (34a) 

& 〈𝛿𝑦2𝑡 , 𝑣2〉 + (∇δ𝑦2, ∇𝑣2) + (𝛿𝑦2, 𝑣2) +
(𝛿𝑦1, 𝑣2) = (𝑓2(𝑦2 + 𝛿𝑦2, 𝑢2 + 𝛿𝑢2), 𝑣2)  

 −(𝑓2(𝑦2, 𝑢2), 𝑣2) (34b) 

Substituting 𝑣1 = 𝛿𝑦1 in (34a) and 𝑣2 = 𝛿𝑦2 

in (34b), adding the two equations, yields 

 1 

2
 

𝑑

𝑑𝑡
‖𝛿𝑦⃗⃗⃗⃗⃗‖

0

2
+ ‖𝛿𝑦⃗⃗⃗⃗⃗‖

1

2
=  

(𝑓1(𝑦1 + 𝛿𝑦1, 𝑢1 + 𝛿𝑢1) − 𝑓1(𝑦1, 𝑢1), 𝛿𝑦1 + 

(𝑓2(𝑦2 + 𝛿𝑦2, 𝑢2 + 𝛿𝑢2) − 𝑓2(𝑦2, 𝑢2), 𝛿𝑦2)  
  ................................ (34c)  

 

The 2𝑛𝑑 term of L.H.S. is positive, using 

Lemma 1.2 in the. ref. [Temam, 1977] for the 

remainder term, integrating from 0 to 𝑡, using 

the Lipshctiz property for the terms in the 

R.H.S., one get,∀𝑡 ∈ [0, 𝑇] 

 ‖𝛿𝑦⃗⃗⃗⃗⃗(𝑡)‖
0

2
≤ 

 2 ∫ ∫ [𝐿1|𝛿𝑦1|2 + �̅�1|𝛿𝑢1||𝛿𝑦1|]𝑑𝑥𝑑𝑡
 

Ω

𝑡

0
+  

 2 ∫ ∫ [𝐿2|𝛿𝑦2|2 + �̅�2|𝛿𝑢2||𝛿𝑦2|]𝑑𝑥𝑑𝑡
 

Ω

𝑡

0
+  

≤ 2𝐿1 ∫ ‖𝛿𝑦1‖0
2

𝑡

0

𝑑𝑡 + �̅�1 ∫ ‖𝛿𝑢1‖0
2

𝑇

0

𝑑𝑡 + 

 �̅�1 ∫ ‖𝛿𝑦1‖0
2𝑡

0
𝑑𝑡 + 2𝐿2 ∫ ‖𝛿𝑦2‖0

2𝑡

0
𝑑𝑡 +  

 �̅�2 ∫ ‖𝛿𝑢2‖0
2𝑇

0
𝑑𝑡 + �̅�2 ∫ ‖𝛿𝑦2‖0

2𝑡

0
𝑑𝑡  

 ⇒ ‖𝛿𝑦⃗⃗⃗⃗⃗(𝑡)‖
0

2
≤ 2�̃�1‖𝛿𝑢⃗⃗⃗⃗⃗‖

𝑄

2
+ �̃�2 ∫ ‖𝛿𝑦⃗⃗⃗⃗⃗‖

0

2𝑡

0
𝑑𝑡  
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Where �̃�1 = �̅�1 + �̅�2, �̃�2 = 2(𝐿1 + 𝐿2) + �̃�1 

The Belman-Gronwall inequality, gives 

‖𝛿𝑦⃗⃗⃗⃗⃗(𝑡)‖
0

2
≤ 𝑀2‖𝛿𝑢⃗⃗⃗⃗⃗‖

𝑄

2
, where 𝑀2 = �̃�1𝑒�̃�2𝑇 

⇒ ‖𝛿𝑦⃗⃗⃗⃗⃗(𝑡)‖
0

≤ 𝑀‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

, 𝑡 ∈ [0, 𝑇] 

⇒  ‖𝛿𝑦⃗⃗⃗⃗⃗‖
𝐿∞(𝐼,𝐿2(Ω))

≤ 𝑀‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

, which gives   

 ‖𝛿𝑦⃗⃗⃗⃗⃗‖
𝐿2(𝑄)

≤ 𝑀‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

, 𝑀2 = �̅�2 = 𝑇𝑀2  

Using the same above steps in (34c) but with 

𝑡 = 𝑇, i.e. 

 ‖𝛿𝑦⃗⃗⃗⃗⃗(𝑇)‖
0

2
+ 2 ∫ ‖𝛿𝑦⃗⃗⃗⃗⃗‖

𝑇

0 1

2
𝑑𝑡  

≤ �̃�1‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

2
+ �̃�2 ‖𝛿𝑦⃗⃗⃗⃗⃗‖

𝑄

2
 ⇒ 

‖𝛿𝑦⃗⃗⃗⃗⃗‖
𝐿2(𝐼,𝑉)

≤ 𝑀‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

, 

where 𝑀2 = �̅�2 = (�̃�1 + �̃�2𝑀2)/2  

(b) The Lipschitz continuous of �⃗⃗� ⟼ �⃗� easily 

obtained using the results in (a).  
 

4. Existence of a Classical Optimal Control  

In this section the existence theorem of a 

continuous classical optimal control vector 

satisfying the equality and inequality state 

constraints is studied. Therefor the following 

assumption and lemma are needed. 
 

Assumptions (B): Consider 𝑔𝑙𝑖 (for 𝑙 = 0,1,2 

and i= 1,2) is of Carathéodory type on 𝑄 ×
(𝑅 × 𝑅), and satisfies the following condition 

w.r.t. 𝑦𝑖 ∈ 𝑅 & 𝑢𝑖 ∈ 𝑅  

|𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖)| ≤ 𝜂𝑙𝑖(𝑥, 𝑡) + 𝑐𝑙𝑖1(𝑦𝑖)
2 +  

 𝑐𝑙𝑖2(𝑢𝑖)
2, 𝜂𝑙𝑖 ∈ 𝐿1(𝑄).  

 

Lemma 4.1:  

With assumptions (B) the functional �⃗⃗� ⟼
𝐺𝑙(�⃗⃗�), for each 𝑙 = 0,1,2 ; defined on 𝐿2(𝑄) is 

continuous. 
 

Proof:  
Using assumption (B) and Proposition 3.1, 

the integral ∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖)
 

𝑄
𝑑𝑥𝑑𝑡 is 

continuous on 𝐿2(𝑄), ∀ 𝑖 = 1,2, ∀𝑙 = 0,1,2 

hence 𝐺𝑙(�⃗⃗�)  

is continuous on 𝐿2(𝑄), ∀𝑙 = 0,1,2. 
 

Lemma 4.2 : [Chryssoverghi 2003]  

Let 𝑔 ∶ 𝑄 × ℝ2 ⟶ ℝ  is of Carathéodory 

type 

 

on 𝑄 × (ℝ × ℝ) and satisfies: 

│𝑔(𝑥, 𝑡, 𝑦, 𝑢)│ ≤ 𝜂(𝑥) + 𝑐𝑦2 + 𝑐′𝑢2,  

where 𝜂(𝑥, 𝑡) ∈ 𝐿1(𝑄, ℝ ), 𝑐 ≥ 0 and 𝑐′ ≥ 0. 

Then ∫ 𝑔(𝑥, 𝑡, 𝑦, 𝑢)𝑑𝑥
 

𝑄
 is continuous on 

𝐿2(𝑄, ℝ2 
), with 𝑢 ∈ 𝑈, 𝑈 ⊂ ℝ is compact.  

 

Theorem 4.1:  

If �⃗⃗⃗� in the set of controls �⃗⃗⃗⃗��⃗⃗⃗� = 𝑊1 × 𝑊2 is 

convex and compact, �⃗⃗⃗⃗�𝐴 ≠ ∅, the functions 

𝑓1, 𝑓2 with 𝜂𝑖 ∈ 𝐿2(𝑄), ∀𝑖 = 1,2, have the 

form  

𝑓1(𝑥, 𝑡, 𝑦1, 𝑢1) = 𝑓11(𝑥, 𝑡, 𝑦1) + 𝑓12(𝑥, 𝑡)𝑢1 

 𝑓2(𝑥, 𝑡, 𝑦2, 𝑢2) = 𝑓21(𝑥, 𝑡, 𝑦2) + 𝑓22(𝑥, 𝑡)𝑢2  

Where |𝑓𝑖1(𝑥, 𝑡, 𝑦𝑖)| ≤ 𝜂𝑖(𝑥, 𝑡) + 𝑐𝑖|𝑦𝑖| & 

|𝑓𝑖2(𝑥, 𝑡)| ≤ 𝑘𝑖, With 𝑘𝑖,𝑐𝑖 ≥ 0, ∀𝑖 = 1,2. 𝑔1𝑖 

is independent of 𝑢𝑖, 𝑔0𝑖 and 𝑔2𝑖 are convex 

with respect to 𝑢𝑖 for fixed (𝑥, 𝑡, 𝑦𝑖). Then 

there exists a classical optimal control. 
 

Proof:  

From the assumptions on 𝑈𝑖 ⊂  ℝ ∀𝑖 = 1,2 

and the Egorov's theorem, once get that 𝑊1 ×

𝑊2 is weakly compact. Since �⃗⃗⃗⃗�𝐴 ≠ ∅, then 

there exists �⃗⃗̅� ∈ �⃗⃗⃗⃗�𝐴 such that 𝐺1(�⃗⃗̅�) =

0, 𝐺2(�⃗⃗̅�) ≤ 0 and there exists a minimum 

sequence {�⃗⃗�𝑘} with �⃗⃗�𝑘 ∈ �⃗⃗⃗⃗�𝐴, ∀𝑘, such that 

𝐺0(�⃗⃗�𝑘) = 𝐺0(�⃗⃗̅�)
�⃗⃗⃗�∈�⃗⃗⃗⃗�𝐴

inf  
𝑛→∞

lim  . Since �⃗⃗�𝑘 ∈ �⃗⃗⃗⃗�𝐴, ∀𝑘 

but �⃗⃗⃗⃗� is weakly compact, there exists a 

subsequence of {�⃗⃗�𝑘} say again {�⃗⃗�𝑘} which 

converges weakly to some point �⃗⃗� in �⃗⃗⃗⃗�, i.e. 

�⃗⃗�𝑘 ⟶ �⃗⃗� weakly in (𝐿2(𝑄))
2
 and ‖�⃗⃗�𝑘‖𝑄 ≤

𝑐, ∀𝑘. From theorem 3.1 the state equations 

has a unique solution �⃗�𝑘 = �⃗��⃗⃗⃗�𝑘
 for each 

control �⃗⃗�𝑘, and the norms ‖�⃗�𝑘‖𝐿∞(𝐼,𝐿2(Ω)), 

‖�⃗�𝑘‖𝐿2(𝑄) and ‖�⃗�𝑘‖𝐿2(𝐼,𝑉) are bounded, then by 

Alaoglu’s theorem there exists a subsequence 

of {�⃗�𝑘} say again {�⃗�𝑘} which converges 

weakly to some point �⃗� w.r.t the above norm, 

i.e. 

 �⃗�𝑘 ⟶ �⃗� weakly in (𝐿∞(𝐼, 𝐿2(Ω)))
2

, in 

(𝐿2(𝑄))
2
and in (𝐿2(𝐼, 𝑉))

2
. 

To show that the norm ‖�⃗�𝑘𝑡‖𝐿2(𝐼,𝑉∗) is 

bounded, the weak forms (12a) & (13a) can 

rewritten in the forms  

 〈𝑦1𝑘𝑡, 𝑣1〉 = −(∇𝑦1𝑘, ∇𝑣1) − (𝑦1𝑘, 𝑣1) +  

 (𝑦2𝑘, 𝑣1) + (𝑓1(𝑦1𝑘, 𝑢1𝑘), 𝑣1)  

& 〈𝑦2𝑘𝑡, 𝑣2〉 = −(∇𝑦2𝑘 , ∇𝑣2) − (𝑦2𝑘, 𝑣2) −  

 (𝑦1𝑘, 𝑣2) + (𝑓2(𝑦2𝑘, 𝑢2𝑘), 𝑣2) 
 

Adding the above two equations, then 

integrating both sides from 0 to 𝑇, taking the 
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absolute value and finally using the Cauchy 

Schwarz inequality, yields  

|∫ 〈�⃗�𝑘𝑡, �⃗�〉𝑑𝑡
𝑇

0
|  

≤ ‖∇𝑦1𝑘‖𝑄‖∇𝑣1‖𝑄 + ‖𝑦1𝑘‖𝑄‖𝑣1‖𝑄  

 +‖𝑦2𝑘‖𝑄‖𝑣1‖𝑄 +(‖𝜂1‖𝑄 + 𝑐1‖𝑦1𝑘‖𝑄 +

�́�1‖𝑢1𝑘‖𝑄)‖𝑣1‖𝑄 + ‖∇𝑦2𝑘‖𝑄‖∇𝑣2‖𝑄 + 

 ‖𝑦2𝑘‖𝑄‖𝑣2‖𝑄 + ‖𝑦1𝑘‖𝑄‖𝑣2‖𝑄  

+(‖𝜂2‖𝑄 + 𝑐2‖𝑦2𝑘‖𝑄 + �́�2‖𝑢2𝑘‖𝑄)‖𝑣2‖𝑄  

 ≤ 2‖∇�⃗�𝑘‖𝑄‖∇�⃗�‖𝑄 + 4‖�⃗�𝑘‖𝑄‖�⃗�‖𝑄 + 

 �̅� (𝑐)‖�⃗�‖𝑄  
 

where �̅� (𝑐) = �̅�3(𝑐) + �̅�4(𝑐), �̅�3(𝑐) = �́�1 +

𝑐1𝑏1(𝑐) + �́�1𝑐1̅ and �̅�4(𝑐) = �́�2 + 𝑐2𝑏2(𝑐) +

�́�2𝑐2̅, with ‖𝜂𝑖‖𝑄 ≤ �́�𝑖, ‖𝑦𝑖𝑘‖𝑄 ≤ 𝑏𝑖(𝑐) & 

‖𝑢𝑖𝑘‖𝑄 ≤ 𝑐�̅�, ∀𝑖 = 1,2. 
 

Setting �̃� (𝑐) = 6𝑏2(𝑐) + �̅� (𝑐), then the above 

inequality ∀�⃗�𝑘𝑡 ∈ 𝑉∗ × 𝑉∗becomes 

‖�⃗�𝑘𝑡‖𝑳𝟐(𝐼,𝑽∗) =
|∫ 〈�⃗⃗�𝑘𝑡,�⃗⃗�〉𝑑𝑡

𝑇
0 |

‖�⃗⃗�‖
𝑳𝟐(𝐼,𝑽)

≤ �̃�(𝑐),  

 

Relation (18) is also satisfied here and gives 

that the injections of (𝐿2(𝐼, 𝑉))2 in to 

(𝐿2(𝑄))2 and of ((𝐿2(𝑄))
∗
)2 in to 

(𝐿2(𝐼, 𝑉∗))2 are continuous and since the 

injections of (𝐿2(𝐼, 𝑉))2 in to (𝐿2(𝑄))2. So we 

got all the hypotheses of compactness 

theorem, which is used here to get that there 

exists a subsequence of {�⃗�𝑘} say again {�⃗�𝑘} 

such that �⃗�𝑘 ⟶�⃗�  strongly in (𝐿2(𝑄))
2
.  

Now, Since for each 𝑘, 𝑦1𝑘 and 𝑦2𝑘 are 

solutions of the weak form (12a) and (13a) 

respectively, substituting these solutions in the 

above indicate equations, then multiplying 

both sides of each equation by 𝜑1(𝑡) and 

𝜑2(𝑡) respectively (with 𝜑𝑖 ∈ 𝐶1[0, 𝑇], such 

that 𝜑𝑖(𝑇) = 0, ∀𝑖 = 1,2), rewriting the 1𝑠𝑡 

terms in the L.H.S. of each one of their, 

integrating both sides from 0 to 𝑇, finally 

integrating by parts for these 1st  

terms, one has  

 − ∫ (𝑦1𝑘, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 +

𝑇

0
  

 ∫ [
𝑇

0
(∇𝑦1𝑘, ∇𝑣1)𝜑1(𝑡) + (𝑦1𝑘, 𝑣1)𝜑1(𝑡) −  

 (𝑦2𝑘, 𝑣1)𝜑1(𝑡)]𝑑𝑡 

 = ∫ (𝑓11(𝑥, 𝑡, 𝑦1𝑘), 𝑣1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0
  

 ∫ ( 
𝑇

0
𝑓12(𝑥, 𝑡)𝑢1𝑘, 𝑣1𝜑1(𝑡)) 𝑑𝑡 + 

 (𝑦1𝑘(0), 𝑣1)𝜑1(0)  .................................... (35) 

& − ∫ (𝑦2𝑘, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0
  

 ∫ [
𝑇

0
(∇𝑦2𝑘, ∇𝑣2)𝜑2(𝑡) + (𝑦2𝑘, 𝑣2)𝜑2(𝑡) +  

 (𝑦1𝑘, 𝑣2)𝜑2(𝑡)]𝑑𝑡 

 = ∫ (𝑓21(𝑥, 𝑡, 𝑦2𝑘), 𝑣2)𝜑1(𝑡)𝑑𝑡 +
𝑇

0
  

 ∫ ( 
𝑇

0
𝑓22(𝑥, 𝑡)𝑢2𝑘 , 𝑣2𝜑2(𝑡))  

 (𝑦2𝑘(0), 𝑣2)𝜑2(0) .................................... (36) 

Since �⃗�𝑘 ⟶ �⃗� weakly in (𝐿2(𝑄))
2
 

and �⃗�𝑘 ⟶ �⃗� weakly in (𝐿2(𝐼, 𝑉))
2
, then 

 − ∫ (𝑦1𝑘, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 +

𝑇

0
  

 ∫ [
𝑇

0
(∇𝑦1𝑘, ∇𝑣1)𝜑1(𝑡) + (𝑦1𝑘, 𝑣1)𝜑1(𝑡) − 

 (𝑦2𝑘, 𝑣1)𝜑1(𝑡)]𝑑𝑡 → − ∫ (𝑦1, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 +

𝑇

0

∫ [
𝑇

0
(∇𝑦1, ∇𝑣1)𝜑1(𝑡)   

 +(𝑦1, 𝑣1)𝜑1(𝑡) − (𝑦2, 𝑣1)𝜑1(𝑡)]𝑑𝑡  ....... (35a) 

& − ∫ (𝑦2𝑘, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0
  

 ∫ [
𝑇

0
(∇𝑦2𝑘, ∇𝑣2)𝜑2(𝑡) + (𝑦2𝑘, 𝑣2)𝜑2(𝑡) + 

 (𝑦1𝑘, 𝑣2)𝜑2(𝑡)]𝑑𝑡 →  

− ∫ (𝑦2, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0

∫ [
𝑇

0
(∇𝑦2, ∇𝑣2)𝜑2(𝑡) +  

 (𝑦2, 𝑣2)𝜑2(𝑡) + (𝑦1, 𝑣2)𝜑2(𝑡)]𝑑𝑡  .......... (36a) 
 

Since 𝑦1𝑘(0), 𝑦2𝑘(0) are bounded in 𝐿2(Ω) 

and from the Projection theorem, yield  

 (𝑦1𝑘
0 , 𝑣1)𝜑1(0) → (𝑦1

0, 𝑣1)𝜑1(0)  ........... (35b) 

& (𝑦2𝑘
0 , 𝑣2)𝜑2(0) → (𝑦2

0, 𝑣2)𝜑2(0)  ....... (36b) 
 

Now, to prove that  

∫ (𝑓11(𝑥, 𝑡, 𝑦1𝑘), 𝑣1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0

∫ ( 
𝑇

0
𝑓12(𝑥, 𝑡)𝑢1𝑘, 𝑣1𝜑1(𝑡)) 𝑑𝑡 →  

∫ (𝑓11(𝑥, 𝑡, 𝑦1), 𝑣1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0
  

∫ ( 
𝑇

0
𝑓12(𝑥, 𝑡)𝑢1, 𝑣1𝜑1(𝑡)) 𝑑𝑡  

Let 𝑤1 = 𝑣1𝜑1(𝑡), 𝑤1 ∈ 𝐿∞(𝐼, 𝑉) ⊂
𝐿2(𝐼, 𝑉) ⊂ 𝐿2(𝑄), then 𝑤1(𝑥, 𝑡) is fixed for 

fixed (𝑥, 𝑡) ∈ 𝑄, let 𝑣1 ∈ 𝐶[Ω̅], then 𝑤1 ∈
𝐶[Q̅] is measurable w.r.t. (𝑥, 𝑡). let 𝑓1̅1(𝑦1𝑘) =
𝑓11(𝑦1𝑘)𝑤1, then 𝑓1̅1: 𝑄 × 𝑅 → 𝑅 is continuous 

w.r.t. 𝑦1 for fixed (𝑥, 𝑡) ∈ 𝑄 

and measurable w.r.t. (𝑥, 𝑡) for fixed 𝑦1. 

Applying Proposition 1.3 in gives the integral 

∫ 𝑓11(𝑦1𝑘)𝑤1
 

𝑄
𝑑𝑥𝑑𝑡 is continuous w.r.t. 𝑦1𝑘, 

but 𝑦1𝑘 ⟶ 𝑦1, strongly in 𝐿2(𝑄) then ∀𝑤1 ∈
𝐶[�̅�], once get 

∫ 𝑓11(𝑦1𝑘)𝑤1
 

𝑄
𝑑𝑥𝑑𝑡 → ∫ 𝑓11(𝑦1)𝑤1

 

𝑄
𝑑𝑥𝑑𝑡 

(35c) 

since 𝑢1𝑘 ⟶ 𝑢1,weakly in 𝐿2(𝑄) then 
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∫ 𝑓12(𝑥, 𝑡)𝑢1𝑘𝑤1𝑑𝑥𝑑𝑡 →
 

𝑄

∫ 𝑓1(𝑥, 𝑡)𝑢1𝑤1
 

𝑄
𝑑𝑥𝑑𝑡  ............................... (35d) 

 

The same way can be used to one get that  

∫ 𝑓21(𝑦2𝑘)𝑤2
 

𝑄
𝑑𝑥𝑑𝑡 →

∫ 𝑓21(𝑦2)𝑤2
 

𝑄
𝑑𝑥𝑑𝑡, ∀𝑤2 ∈ 𝐶[�̅�]  .............. (36c) 

∫ 𝑓12(𝑥, 𝑡)𝑢1𝑘, 𝑤1𝑑𝑥𝑑𝑡 →
 

𝑄

∫ 𝑓1(𝑥, 𝑡)𝑢1𝑤1
 

𝑄
𝑑𝑥𝑑𝑡  ............................... (36d) 

 

Finally, using (35a,b,c & d) and (36a,b,c&d) in 

(35) and (36)respectively, once get  

 − ∫ (𝑦1, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 + ∫ [

𝑇

0
(∇𝑦1, ∇𝑣1)𝜑1(𝑡)

𝑇

0
  

 +(𝑦1, 𝑣1)𝜑1(𝑡) − (𝑦2, 𝑣1)𝜑1(𝑡)]𝑑𝑡  

 = ∫ (𝑓11(𝑥, 𝑡, 𝑦1), 𝑣1)𝜑1(𝑡)𝑑𝑡
𝑇

0
  

 + ∫ ( 
𝑇

0
𝑓12(𝑥, 𝑡)𝑢1, 𝑣1)𝜑1(𝑡) 𝑑𝑡 

 +(𝑦1
0, 𝑣1)𝜑1(0)  ........................................ (38) 

& − ∫ (𝑦2, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0

∫ [
𝑇

0
(∇𝑦2, ∇𝑣2)𝜑2(𝑡)  

 +(𝑦2, 𝑣2)𝜑2(𝑡) + (𝑦1, 𝑣2)𝜑2(𝑡)]𝑑𝑡 

 = ∫ (𝑓21(𝑥, 𝑡, 𝑦2), 𝑣2)𝜑2(𝑡)𝑑𝑡
𝑇

0
  

 + ∫ ( 
𝑇

0
𝑓22(𝑥, 𝑡)𝑢2, 𝑣2)𝜑2(𝑡) 𝑑𝑡  

 +(𝑦2
0, 𝑣2)𝜑2(0)  ........................................ (39) 

(38) and (39) are hold for each 𝑣𝑖 ∈ 𝐶(Ω̅) and 

since 𝐶(Ω̅) is dense in 𝑉, then also are hold for 

every 𝑣𝑖 ∈ 𝑉, ∀𝑖 = 1,2. hence the following 

two cases are appear: 
 

Case1: Choose 𝜑𝑖 ∈ 𝐷[0, 𝑇], i.e. 𝜑𝑖(0) =
𝜑𝑖(𝑇) = 0, ∀𝑖 = 1,2. Using integration by 

parts for the 1𝑠𝑡 terms in the L.H.S. of (38) 

and (39), once get ∀𝜑1 ∈ 𝐷[0, 𝑇] 

 ∫ 〈𝑦1𝑡, 𝑣1〉𝜑1(𝑡)𝑑𝑡 + 
𝑇

0
  

 ∫ [
𝑇

0
(∇𝑦1, ∇𝑣1)𝜑1(𝑡) + (𝑦1, 𝑣1)𝜑1(𝑡) −  

 (𝑦2, 𝑣1)𝜑1(𝑡)]𝑑𝑡  

= ∫ (𝑓11(𝑥, 𝑡, 𝑦1), 𝑣1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0
  

 ∫  
𝑇

0
(𝑓12(𝑥, 𝑡)𝑢1, 𝑣1)𝜑1(𝑡) 𝑑𝑡,  .................. (40) 

 ⇒  

〈𝑦1𝑡, 𝑣1〉 + (∇𝑦1, ∇𝑣1) + (𝑦1, 𝑣1) − (𝑦2, 𝑣1) 

 = (𝑓11(𝑥, 𝑡, 𝑦1), 𝑣1) + (𝑓12(𝑥, 𝑡)𝑢1, 𝑣1),  

 ∀𝑣1 ∈ 𝑉, a.e. on 𝐼 (40a) 

 i.e.𝑦1 = 𝑦𝑢1 satisfies (8a), & ∀𝜑2 ∈ 𝐷[0, 𝑇] 

∫ 〈𝑦2𝑡, 𝑣2〉𝜑2(𝑡)𝑑𝑡 +
𝑇

0
  

∫ [
𝑇

0
(∇𝑦2, ∇𝑣2)𝜑2(𝑡) + (𝑦2, 𝑣2)𝜑2(𝑡) + 

(𝑦1, 𝑣2)𝜑2(𝑡)]𝑑𝑡 

= ∫ (𝑓21(𝑥, 𝑡, 𝑦2), 𝑣2)𝜑2(𝑡)𝑑𝑡 +
𝑇

0
  

∫  
𝑇

0
(𝑓22(𝑥, 𝑡)𝑢2, 𝑣2)𝜑2(𝑡) 𝑑𝑡,  .................. (41) 

⇒  
〈𝑦2𝑡, 𝑣2〉 + (∇𝑦2, ∇𝑣2) + (𝑦2, 𝑣2) + (𝑦1, 𝑣2)  

= (𝑓21(𝑥, 𝑡, 𝑦2), 𝑣2) + (𝑓22(𝑥, 𝑡)𝑢2, 𝑣2)  

 ∀𝑣2 ∈ 𝑉, a.e. on 𝐼  .................................... (41a) 

 i.e.𝑦2 = 𝑦𝑢2 satisfies (9a). 

Case 2: Choose 𝜑𝑖 ∈ 𝐶1[𝐼], such that 𝜑𝑖(𝑇) =
0 & 𝜑𝑖(0) ≠ 0, ∀𝑖 = 1,2. Using integration by 

parts for the 1𝑠𝑡terms in the L.H.S. of (40) and 

(41), one has  

 − ∫ (𝑦1, 𝑣1)𝜑1
´ (𝑡)𝑑𝑡 + 

𝑇

0
 

 ∫ [
𝑇

0
(∇𝑦1, ∇𝑣1)𝜑1(𝑡) + (𝑦1, 𝑣1)𝜑1(𝑡) −  

 (𝑦2, 𝑣1)𝜑1(𝑡)]𝑑𝑡  

 = ∫ (𝑓11(𝑥, 𝑡, 𝑦1), 𝑣1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0
  

 ∫ (𝑓12(𝑥, 𝑡)𝑢1, 𝑣1)𝜑1(𝑡) 𝑑𝑡
𝑇

0
+  

 (𝑦1(0), 𝑣1)𝜑1(0)  ...................................... (42) 

& − ∫ (𝑦2, 𝑣2)𝜑2
´ (𝑡)𝑑𝑡 +

𝑇

0
  

 ∫ [
𝑇

0
(∇𝑦2, ∇𝑣2)𝜑2(𝑡) + (𝑦2, 𝑣2)𝜑2(𝑡) +  

 (𝑦1, 𝑣2)𝜑2(𝑡)]𝑑𝑡  

= ∫ (𝑓21(𝑥, 𝑡, 𝑦1), 𝑣1)𝜑1(𝑡)𝑑𝑡 +
𝑇

0
  

 ∫  
𝑇

0
(𝑓22(𝑥, 𝑡)𝑢2, 𝑣2)𝜑2(𝑡) 𝑑𝑡 +  

 (𝑦2(0), 𝑣2)𝜑2(0)  ..................................... (43) 
 

By subtracting (42) from (38) and (43) from 

(39), one obtain∀𝜑𝑖 ∈ [0, 𝑇], ∀𝑖 = 1,2 that 

(𝑦𝑖
0, 𝑣𝑖)𝜑𝑖(0) = (𝑦𝑖(0), 𝑣𝑖)𝜑𝑖(0), 𝜑𝑖(0) ≠ 0  

⇒ 𝑦𝑖
0 = 𝑦𝑖(0) = 𝑦𝑖

0(𝑥).  

Thus 𝑦1 & 𝑦2 are solutions of (8-9). 

Now, since  

 𝐺1(�⃗⃗�𝑘) = ∫ 𝑔11(𝑥, 𝑡, 𝑦1𝑘)
 

𝑄
𝑑𝑥𝑑𝑡 + 

 ∫ 𝑔12(𝑥, 𝑡, 𝑦2𝑘)
 

𝑄
𝑑𝑥𝑑𝑡 

Since∀𝑖 = 1,2, 𝑔1𝑖 is independent of 𝑢𝑖 and is 

continuous w.r.t. 𝑦𝑖, then the integral 

∫ 𝑔1𝑖(𝑥, 𝑡, 𝑦𝑖𝑘)
 

𝑄
𝑑𝑥𝑑𝑡 is continuous w.r.t. 𝑦𝑖, 

but �⃗�𝑘 ⟶�⃗�  strongly in (𝐿2(𝑄))
2
, then 

∫ 𝑔1𝑖(𝑥, 𝑡, 𝑦𝑖𝑘)
 

𝑄
𝑑𝑥𝑑𝑡 → ∫ 𝑔1𝑖(𝑥, 𝑡, 𝑦𝑖)

 

𝑄
𝑑𝑥𝑑𝑡  

 Then 𝐺1(�⃗⃗� ) = lim
𝑘→∞

𝐺1(�⃗⃗�𝑘) = 0. 

Now, we want to prove that ∀𝑙 = 0,2, 𝐺𝑙(�⃗⃗� ) is 

weakly lower semi continuous (W.L.S.C.) 

w.r.t. (�⃗�, �⃗⃗�). Since 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖 , 𝑢𝑖) is 

continuous w.r.t. (𝑦𝑖, 𝑢𝑖) and since 𝑢𝑖(𝑥, 𝑡) ∈
𝑈𝑖 a.e. in 𝑄 and 𝑈𝑖 is compact, i.e. 𝑔𝑙𝑖 is 

satisfied the assumptions of lemma 4.2, ∀𝑖 =
1,2 &𝑙 = 0,2, which gives  

∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖𝑘, 𝑢𝑖𝑘) 
 

𝑄
𝑑𝑥𝑑𝑡 →

∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖𝑘) 
 

𝑄
𝑑𝑥𝑑𝑡  ........................... (44) 
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but 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖) is convex and continuous 

w.r.t. 𝑢𝑖 then ∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖𝑘) 
 

𝑄
𝑑𝑥𝑑𝑡 is also 

convex and continuous w.r.t. 𝑢𝑖 ⇒

∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖) 
 

𝑄
𝑑𝑥𝑑𝑡 is W.L.S.C. w.r.t. 𝑢𝑖 

(for each 𝑙 = 0,2 & 𝑖 = 1,2 ) i.e. 

∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖) 
 

𝑄
𝑑𝑥𝑑𝑡  

 ≤ lim
𝑘→∞

inf
 

∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖𝑘) 
 

𝑄
𝑑𝑥𝑑𝑡   

 = lim
𝑘→∞

inf
 

∫ (𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖𝑘) −
 

𝑄
  

 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖𝑘, 𝑢𝑖𝑘))𝑑𝑥𝑑𝑡 +  

 lim
𝑘→∞

inf
 

∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖𝑘, 𝑢𝑖𝑘) 
 

𝑄
𝑑𝑥𝑑𝑡 . 

Then by (44), one obtain that  

∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖) 
 

𝑄
𝑑𝑥𝑑𝑡  

 ≤ lim
𝑘→∞

inf
 

∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖𝑘, 𝑢𝑖𝑘) 
 

𝑄
𝑑𝑥𝑑𝑡  

⇒  ∑ ∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖) 
 

𝑄

𝑑𝑥𝑑𝑡

2

𝑖=1

≤ 

 lim
𝑘→∞

inf ∑ ∫ 𝑔𝑙𝑖(𝑥, 𝑡, 𝑦𝑖𝑘 , 𝑢𝑖𝑘) 
 

𝑄
𝑑𝑥𝑑𝑡2

𝑖=1   

⇒  𝐺𝑙(�⃗⃗�) ≤ lim
𝑘→∞

inf 𝐺𝑙(�⃗⃗�𝑘) , i.e. 𝐺𝑙(�⃗⃗�) is 

W.L.S.C. w.r.t. (�⃗�, �⃗⃗�), for each 𝑙 = 0,2. 

but 𝐺2(�⃗⃗�𝑘) ≤ 0, ∀𝑘 then 𝐺2(�⃗⃗� ) ≤ 0, and 

𝐺0(�⃗⃗�) ≤ lim
𝑘→∞

inf 𝐺0(�⃗⃗�𝑘) = lim
𝑘→∞

𝐺0(�⃗⃗�𝑘) 

 = inf
�⃗⃗⃗�∈�⃗⃗⃗⃗�𝐴

𝐺0(�⃗⃗̅�𝑘) = min
�⃗⃗⃗�∈�⃗⃗⃗⃗�𝐴

𝐺0(�⃗⃗̅�𝑘)  

Which means that �⃗⃗� is an optimal control. 
 

Assumptions (C): 

𝑔𝑙𝑖𝑦𝑖
 and 𝑔𝑙𝑖𝑢𝑖

, (𝑙 = 0,2&𝑖 = 1,2) are of 

Carathéodory type (or continuous ) on 𝑄 ×
(𝑅 × 𝑅) and are satisfied ∀(𝑥, 𝑡) ∈ 𝑄, and 

𝑦𝑖, 𝑢𝑖 ∈ 𝑅 

 |𝑔𝑙𝑖𝑦𝑖
(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖)| ≤ 𝜂𝑙𝑖5

(𝑥, 𝑡) + 𝑐𝑙𝑖5
|𝑦𝑖| 

 +�́�𝑙𝑖5
|𝑢𝑖|, 𝜂𝑙𝑖5

∈ 𝐿2(𝑄) 

|𝑔𝑙𝑖𝑢𝑖
(𝑥, 𝑡, 𝑦𝑖 , 𝑢𝑖)| ≤ 𝜂𝑙𝑖6

(𝑥, 𝑡) + 𝑐𝑙𝑖6
|𝑦𝑖| + 

 +�́�𝑙𝑖6
|𝑢𝑖|, 𝜂𝑙𝑖6

∈ 𝐿2(𝑄).  

 

Theorem 4.2:  

Dropping the index 𝑙 in 𝑔𝑙 & 𝐺𝑙. With 

assumptions (A), (B) and (C), the following 

adjoint (𝑧1, 𝑧2) = (𝑧𝑢1, 𝑧𝑢2) equations are 

given by  

−𝑧1𝑡 − ∆𝑧1 + 𝑧1 + 𝑧2  

= 𝑧1𝑓𝑦1(𝑥, 𝑡, 𝑦1, 𝑢1) + 𝑔𝑦1(𝑥, 𝑡, 𝑦1, 𝑢1) −𝑧2𝑡 −

∆𝑧2 + 𝑧2 − 𝑧1 

= 𝑧2𝑓𝑦2(𝑥, 𝑡, 𝑦2, 𝑢2) + 𝑔𝑦2(𝑥, 𝑡, 𝑦2, 𝑢2)  

𝑧1(𝑇) = 0 and 𝑧2(𝑇) = 0, on Γ 
 

And the Hamiltonian is defined: 

𝐻(𝑥, 𝑡, 𝑦𝑖, 𝑧𝑖 , 𝑢𝑖) =  

= ∑ (𝑧𝑖𝑓𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖) + 𝑔𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖)) 2
𝑖=1   

Then the Fréchet derivative of 𝐺 is given by  

�́�(�⃗⃗�) ∙ 𝛿𝑢⃗⃗⃗⃗⃗ = ∫ (
𝑧1𝑓𝑢1 + 𝑔𝑢1

𝑧2𝑓𝑢2 + 𝑔𝑢2
)

 

𝑄
∙ (

𝛿𝑢1

𝛿𝑢2
) 𝑑𝑥𝑑𝑡  

 

Proof:  
At first let  

 𝐺(�⃗⃗�) = ∫ 𝑔1(𝑥, 𝑡, 𝑦1, 𝑢1)𝑑𝑥𝑑𝑡
 

𝑄
+ 

 ∫ 𝑔2(𝑥, 𝑡, 𝑦2, 𝑢2)𝑑𝑥𝑑𝑡
 

𝑄
 

Where �⃗⃗� is a given control and �⃗�, is its 

corresponding solution of the state equation. 

From the assumptions on 𝑔1 and 𝑔2, the 

definition of the Fréchet derivative, the result 

of Lemma 3.1, and then using Minkowiski 

inequality, we have 

 𝐺0(�⃗⃗� + 𝛿�⃗⃗�) − 𝐺0(�⃗⃗�) 

 = ∫ (𝑔1𝑦1
𝛿𝑦1 + 𝑔1𝑢1

𝛿𝑢1)𝑑𝑥
 

Ω
+  

 ∫ (𝑔2𝑦2
𝛿𝑦2 + 𝑔2𝑢2

𝛿𝑢2)𝑑𝑥
 

Ω
  

 +𝜀1(𝛿𝑢⃗⃗⃗⃗⃗)‖𝛿𝑢⃗⃗⃗⃗⃗‖
0
  ........................................ (45) 

where 𝜀1(𝛿𝑢⃗⃗⃗⃗⃗) ⟶ 0& ‖𝛿𝑢⃗⃗⃗⃗⃗‖
0

⟶ 0 as 𝛿𝑢⃗⃗⃗⃗⃗ ⟶ 0. 

 

On the other hand, the weak forms of the 

adjoint equations are  

−〈𝑧1𝑡, 𝑣1〉 + (∇𝑧1, ∇𝑣1) + (𝑧1, 𝑣1)  

 +(𝑧2, 𝑣1) = (𝑧1𝑓1𝑦1, 𝑣1) + (𝑔1𝑦1, 𝑣1)  ..... (46) 

& −〈𝑧2𝑡, 𝑣2〉 + (∇𝑧2, ∇𝑣2) + (𝑧2, 𝑣2)  

 −(𝑧1, 𝑣2) = (𝑧2𝑓2𝑦2, 𝑣2) + (𝑔2𝑦2, 𝑣2)  .... (47) 
 

The proof of the unique solution of the 

weak form (46-47) is similar to the proof of 

the unique solution of the state equation (8-9). 

Substituting 𝑣1 = 𝛿𝑦1in (46) and 𝑣2 = 𝛿𝑦2in 

(47), integrating both sides from 0 to 𝑇 and 

then integration by parts for the 1𝑠𝑡 terms of 

each obtained equation, one has 

 ∫ 〈𝛿𝑦1𝑡, 𝑧1〉
𝑇

0
𝑑𝑡 + ∫ [

𝑇

0
(∇𝑧1, ∇𝛿𝑦1) +  

 (𝑧1, 𝛿𝑦1) + (𝑧2, 𝛿𝑦1)]𝑑𝑡 =  

 ∫ [
𝑇

0
(𝑧1𝑓1𝑦1, 𝛿𝑦1) + (𝑔1𝑦1, 𝛿𝑦1)]𝑑𝑡  ......... (48)  

& ∫ 〈𝛿𝑦2𝑡, 𝑧2〉
𝑇

0
𝑑𝑡 + ∫ [

𝑇

0
(∇𝑧2, ∇𝛿𝑦2) +  

 (𝑧2, 𝛿𝑦2) − (𝑧1, 𝛿𝑦2)]𝑑𝑡 =  

 ∫ [
𝑇

0
(𝑧2𝑓2𝑦2, 𝛿𝑦2) + (𝑔2𝑦2, 𝛿𝑦2)]𝑑𝑡 ......... (49)  

 

Substituting the solution 𝑦1once in (12) and 

then the solution 𝑦1 + 𝛿𝑦1 once again, 

subtracting the obtained equations one from 

the other, with 𝑣1 = 𝑧1, we have 
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∫ 〈𝛿𝑦1𝑡, 𝑧1〉
𝑇

0
𝑑𝑡 + ∫ [

𝑇

0
(∇𝛿𝑦1, ∇𝑧1) +

(𝛿𝑦1, 𝑧1) − (𝛿𝑦2, 𝑧1)]𝑑𝑡 =  

∫ (𝑓1(𝑦1 + 𝛿𝑦1, 𝑢1 + 𝛿𝑢1), 𝑧1)𝑑𝑡
𝑇

0
−

∫ (𝑓1(𝑦1, 𝑢1), 𝑧1)𝑑𝑡
𝑇

0
  .................................. (50) 

 

Also substituting the solutions 𝑦2once in 

(13) and then the solution 𝑦2+𝛿𝑦2 once again, 

subtracting the obtained equations one from 

the other, with𝑣2 = 𝑧2, we have 

∫ 〈𝛿𝑦2𝑡, 𝑧2〉
𝑇

0
𝑑𝑡 + ∫ [

𝑇

0
(∇𝛿𝑦2, ∇𝑧2) +

(𝛿𝑦2, 𝑧2) + (𝛿𝑦1, 𝑧2)]𝑑𝑡 =  

∫ (𝑓2(𝑦2 + 𝛿𝑦2, 𝑢2 + 𝛿𝑢2), 𝑧2)𝑑𝑡
𝑇

0
−  

∫ (𝑓2(𝑦2, 𝑢2), 𝑧2)𝑑𝑡
𝑇

0
  .................................. (51) 

 

From the assumptions on 𝑓1 and 𝑓2, the 

Fréchet derivatives of 𝑓1 and 𝑓2 are exist, then 

from the result of Lemma 3.1 and the 

Minkowiski inequality, once get  

∫ 〈𝛿𝑦1𝑡, 𝑧1〉
𝑇

0
𝑑𝑡 + ∫ [

𝑇

0
(∇𝛿𝑦1, ∇𝑧1) +

(𝛿𝑦1, 𝑧1) − (𝛿𝑦2, 𝑧1)]𝑑𝑡 =  

 ∫ (
𝑇

0
𝑓1𝑦1𝛿𝑦1 + 𝑓1𝑢1𝛿𝑢1, 𝑧1)𝑑𝑡 +

𝜀2(𝛿𝑢⃗⃗⃗⃗⃗)‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

  ............................................ (52) 

& 

∫ 〈𝛿𝑦2𝑡, 𝑧2〉
𝑇

0
𝑑𝑡 + ∫ [

𝑇

0
(∇𝛿𝑦2, ∇𝑧2) +

(𝛿𝑦2, 𝑧2) + (𝛿𝑦1, 𝑧2)]𝑑𝑡 =  

 ∫ (
𝑇

0
𝑓2𝑦2𝛿𝑦2 + 𝑓2𝑢2𝛿𝑢2, 𝑧2)𝑑𝑡 +

𝜀3(𝛿𝑢⃗⃗⃗⃗⃗)‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

  ............................................ (53) 

 

Subtracting (52) and (53) from (48) and 

(49), adding the obtain equations, one get  

∫ [
𝑇

0
(𝑓1𝑢1𝛿𝑢1, 𝑧1) + (𝑓2𝑢2𝛿𝑢2, 𝑧2)]𝑑𝑡 +

𝜀4(𝛿𝑢⃗⃗⃗⃗⃗)‖𝛿𝑢⃗⃗⃗⃗⃗‖
𝑄

=  

 ∫ [
𝑇

0
(𝑔1𝑦1, 𝛿𝑦1) + (𝑔2𝑦2, 𝛿𝑦2)]𝑑𝑡 (54) 

Where 𝜀4(𝛿𝑢⃗⃗⃗⃗⃗) = 𝜀2(𝛿𝑢⃗⃗⃗⃗⃗) + 𝜀3(𝛿𝑢⃗⃗⃗⃗⃗) ⟶ 0, as 

‖𝛿𝑢⃗⃗⃗⃗⃗ ‖
𝑄

⟶ 0  

 

Now, substituting (54) in (45), once get 

 𝐺(𝑢1 + 𝛿𝑢1) − 𝐺(𝑢1) = ∫ (𝑧1𝑓1𝑢1 +
 

𝑄

𝑔1𝑢1)𝛿𝑢1 𝑑𝑥𝑑𝑡 + ∫ (𝑧2𝑓2𝑢2 +
 

𝑄

𝑔2𝑢2)𝛿𝑢2 𝑑𝑥𝑑𝑡 + 𝜀5(𝛿𝑢⃗⃗⃗⃗⃗)‖𝛿𝑢⃗⃗⃗⃗⃗ ‖
𝑄

  

 ................................... (55) 
 

Where 𝜀5(𝛿𝑢⃗⃗⃗⃗⃗) = 𝜀1(𝛿𝑢⃗⃗⃗⃗⃗) + 𝜀4(𝛿𝑢⃗⃗⃗⃗⃗) ⟶ 0, 

 as ‖𝛿𝑢⃗⃗⃗⃗⃗ ‖
𝑄

⟶ 0 

Hence the Fréchet derivative of 𝐺 is  

�́�(�⃗⃗�) ∙ 𝛿𝑢⃗⃗⃗⃗⃗ = ∫ (
𝑧1𝑓1𝑢1 + 𝑔1𝑢1

𝑧2𝑓2𝑢2 + 𝑔2𝑢2
) ∙ (

𝛿𝑢1

𝛿𝑢2
)

 

𝑄
𝑑𝑥𝑑𝑡  

 

5. Necessary and sufficient conditions for 

optimality: 

In this section the necessary theorem for 

optimality under prescribed assumptions is 

proved so as the sufficient theorem for 

optimality as follows: 

Theorem 5.1: Necessary Conditions for 

Optimality (Multipliers Theorem):  

a) with assumptions (A),(B) and (C) if �⃗⃗⃗⃗� is 

convex, the control �⃗⃗� ∈ �⃗⃗⃗⃗�𝐴 is optimal, then 

there exist multipliers 𝜆𝑙 ∈ ℝ, 𝑙 = 0,1,2 with 

𝜆0 ≥ 0, 𝜆2 ≥ 0, ∑|𝜆𝑙|
2

𝑙=0
= 1 such that the 

following Kuhn-Tucker-Lagrange (K.T.L.) 

conditions are satisfied: ∫ 𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)
 

𝑄
∙

𝛿𝑢⃗⃗⃗⃗⃗𝑑𝑥𝑑𝑡 ≥ 0  

 ∀�⃗⃗⃗� ∈  �⃗⃗⃗⃗�, 𝛿𝑢⃗⃗⃗⃗⃗ = �⃗⃗⃗� − �⃗⃗�  ............................ (56a) 

where 𝑔𝑖 = ∑
2

𝑙=0
𝜆𝑙𝑔𝑙𝑖 and 𝑧𝑖 = ∑

2

𝑙=0
𝜆𝑙𝑧𝑙𝑖 (𝑖 =

1,2) in the definition of 𝐻 and 𝑧, and also the 

Transversality condition is 

𝜆2𝐺2(�⃗⃗�) = 0  ........................................... (56b) 

(b)(Minimum principle in weak form) If �⃗⃗⃗⃗� =

�⃗⃗⃗⃗��⃗⃗⃗� then inequality (56a) is equivalent to the 

minimum principle in point wise form  

𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�). �⃗⃗�(𝑡) =
min
�⃗⃗⃗�∈�⃗⃗⃗�

𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�). �⃗⃗⃗�, a. e. on𝑄,  ............ (57) 

 

Proof:  

a) From Theorem(4.2)we get that the 

functional 𝐺𝑙(�⃗⃗�) has a continuous Fréchet 

derivative at each �⃗⃗� ∈ �⃗⃗⃗⃗�, since the control 

�⃗⃗� ∈ �⃗⃗⃗⃗�𝐴 is optimal, then using the K.T.L. 

theorem there exist multipliers 𝜆𝑙 ∈ ℝ, 𝑙 =

0,1,2 with 𝜆0 ≥ 0, 𝜆2 ≥ 0, ∑
2

𝑙=0
|𝜆𝑙| = 1,such 

that ∀�⃗⃗⃗� ∈ �⃗⃗⃗⃗� 

(𝜆0�⃗�0�⃗⃗⃗�
(�⃗⃗�) + 𝜆1�⃗�1�⃗⃗⃗�

(�⃗⃗�) + 𝜆2�⃗�2�⃗⃗⃗�
(�⃗⃗�)) . (�⃗⃗⃗� −

�⃗⃗�) ≥ 0  

and 𝜆2𝐺2(�⃗⃗�) = 0  
 

Substituting the Fréchet derivatives of 

𝐺𝑙(�⃗⃗�) (for 𝑙 = 0,1,2) in the above inequality, 

i.e. ∑ ∫ [(𝑧𝑖𝑓𝑖𝑢𝑖 + 𝑔𝑖𝑢𝑖)
 

𝑄
]2

𝑖=1 𝛿𝑢𝑖𝑑𝑥𝑑𝑡 ≥ 0,  
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where 𝑔𝑖 = ∑ 𝜆𝑙
2
𝑙=0 𝑔𝑙𝑖, 𝑧𝑖 = ∑ 𝜆𝑙

2
𝑙=0 𝑧𝑙𝑖, ∀𝑖 =

1,2, or 

∫ (𝑧1𝑓1𝑢1

 

Ω
+ 𝑔1𝑢1

, 𝑧2ℎ1𝑢2
+ 𝑔2𝑢2

). 𝛿𝑢 ⃗⃗⃗⃗⃗⃗⃗𝑑𝑥 ≥ 0  

 ⇛ ∫ 𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)
 

𝑄
∙ 𝛿𝑢⃗⃗⃗⃗⃗𝑑𝑥𝑑𝑡 ≥ 0,  

 ∀�⃗⃗⃗� ∈ �⃗⃗⃗⃗�, 𝛿𝑢⃗⃗⃗⃗⃗ = �⃗⃗⃗� − �⃗⃗�  
 

To prove the second part, let {�⃗⃗⃗�𝑘} dense in 

a set �⃗⃗⃗⃗�, 𝜇 is Lebesgue measure on 𝑄 and let 

𝑆 ⊂ 𝑄 be a measurable set such that  

�⃗⃗⃗�(𝑥, 𝑡) = {
�⃗⃗⃗�𝑘(𝑥, 𝑡), 𝑖𝑓 (𝑥, 𝑡) ∈ 𝑆

�⃗⃗�(𝑥, 𝑡), 𝑖𝑓 (𝑥, 𝑡) ∉ 𝑆
  

Therefore (56a) becomes for each 𝑆 

∫ 𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)
 

𝑆

(�⃗⃗⃗�𝑘 − �⃗⃗�) ≥ 0 ⇛ 

𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)(�⃗⃗⃗�𝑘 − �⃗⃗�) ≥ 0,a.e.in 𝑄  ...... (58) 

 

This inequality holds in a set 𝑃 = ⋂ 𝑃𝑘𝑘 , 

where 𝑃𝑘 = 𝑄 − 𝑄𝑘, 𝜇(𝑄𝑘) = 0, ∀𝑘, but 𝑃 is 

independent of 𝑘 with 𝜇(𝑄 − 𝑃) = 0  

but {�⃗⃗⃗�𝑘} is dense in �⃗⃗⃗⃗�, then (58) becomes  

 𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)(�⃗⃗⃗� − �⃗⃗�) ≥ 0, a.e. in Q ⇒
 𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)�⃗⃗� = min

�⃗⃗⃗�∈�⃗⃗⃗�
𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)�⃗⃗⃗�, 

a.e. in 𝑄. 

The converse is clear. 
 

Theorem 5.2: (Sufficient Conditions for 

Optimality): In Addition to the assumptions 

(A), (B) and (C), Suppose that �⃗⃗⃗⃗� is convex, 

𝑓1, 𝑓2 and 𝑔1𝑖are affine w.r.t. (𝑦𝑖, 𝑢𝑖) for 

each(𝑥, 𝑡)and 𝑔0𝑖&𝑔2𝑖are convex w.r.t. 

(𝑦𝑖, 𝑢𝑖) for each (𝑥, 𝑡),∀𝑖 = 1,2. Then the 

necessary conditions in Theorem 5.1 with 

𝜆0 > 0 are also sufficient. 
 

Proof: 

Assume �⃗⃗� is satisfied the K.T.L. condition, 

and �⃗⃗� ∈ �⃗⃗⃗⃗�𝐴, i.e. 

∫ 𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)𝛿𝑢⃗⃗⃗⃗⃗ 

𝑄
𝑑𝑥𝑑𝑡 ≥ 0, ∀�⃗⃗⃗� ∈ �⃗⃗⃗⃗� and 

𝜆2𝐺2(�⃗⃗�) = 0  

Let 𝐺(�⃗⃗�) = ∑ 𝜆𝑙𝐺𝑙(�⃗⃗�)2
𝑙=0 , then using theorem 

4.2, we have  

�́�(�⃗⃗�) ∙ 𝛿𝑢⃗⃗⃗⃗⃗ = 

∑ 𝜆𝑙 ∫ ∑ (𝑧𝑙𝑖𝑓𝑖𝑢𝑖 + 𝑔𝑙𝑖𝑢𝑖)
2
𝑖=1 𝛿𝑢𝑖

 

𝑄
𝑑𝑥𝑑𝑡2

𝑙=0   

 = ∫ 𝐻�⃗⃗⃗�(𝑥, 𝑡, �⃗�, 𝑧, �⃗⃗�)𝛿𝑢⃗⃗⃗⃗⃗ 

𝑄
𝑑𝑥𝑑𝑡 ≥ 0  

Since 

 𝑓1(𝑥, 𝑡, 𝑦1, 𝑢1) = 𝑓11(𝑥, 𝑡)𝑦1 + 𝑓12(𝑥, 𝑡)𝑢1 

 +𝑓13(𝑥, 𝑡), and 

 𝑓2(𝑥, 𝑡, 𝑦2, 𝑢2) = 𝑓21(𝑥, 𝑡)𝑦2 + 𝑓22(𝑥, 𝑡)𝑢2 

 +𝑓23(𝑥, 𝑡),  

Let �⃗⃗� = (𝑢1, 𝑢2) &�⃗⃗̅� = (�̅�1, �̅�2) are two given 

controls vectors, then �⃗� = (𝑦𝑢1, 𝑦𝑢2) =

(𝑦1, 𝑦2) & �⃗̅� = (�̅�𝑢1, �̅�𝑢2) = (�̅�1, �̅�2) are their 

corresponding stats solutions. Substituting the 

pair (�⃗⃗�, �⃗�) in equations (1-6) and multiplying 

all the obtained equations by 𝛼 ∈ [0,1] once 

and then substituting the pair (�⃗⃗̅�, �⃗̅�) in (1-6) 

once again and multiplying all the obtained 

equations by (1 −  𝛼), finally adding each pair 

from the corresponding equations together one 

gets: 

(𝛼𝑦1 + (1 − 𝛼)�̅�1 )𝑡 − ∆(𝛼𝑦1 + (1 − 𝛼)�̅�1) +
(𝛼𝑦1 + (1 − 𝛼)�̅�1) − (𝛼𝑦2 + (1 − 𝛼)�̅�2) 

= 𝑓11(𝑥, 𝑡)(𝛼𝑦1 + (1 − 𝛼)�̅�1) +  

𝑓12(𝑥, 𝑡)(𝛼𝑢1 + (1 − 𝛼)�̅�1) + 𝑓13(𝑥, 𝑡)  
 ................................. (59a)  

𝛼𝑦1(𝑥, 𝑡) + (1 − 𝛼)�̅�1(𝑥, 0) = 0  ........... (59b) 

𝛼𝑦1(𝑥, 0) + (1 − 𝛼)�̅�1(𝑥, 0) = 𝑦1
0(𝑥)  .... (59c) 

 

(𝛼𝑦2 + (1 − 𝛼)�̅�2 )𝑡 − ∆(𝛼𝑦2 +
(1 − 𝛼)�̅�2) + (𝛼𝑦2 + (1 − 𝛼)�̅�2) + 𝛼 
(𝛼𝑦1 + (1 − 𝛼)�̅�1)  

= 𝑓21(𝑥, 𝑡)(𝛼𝑦2 + (1 − 𝛼)�̅�2) +
 𝑓22(𝑥, 𝑡)(𝛼𝑢2 + (1 − 𝛼)�̅�2) + 𝑓23(𝑥, 𝑡)  

 ................................. (60a) 

𝛼𝑦2(𝑥, 𝑡) + (1 − 𝛼)�̅�2(𝑥, 0) = 0  ........... (60b) 

𝛼𝑦2(𝑥, 0) + (1 − 𝛼)�̅�2(𝑥, 0) = 𝑦2
0(𝑥)  .... (60c) 

  

Equations (59) and (60) tell us that if we 

have the control vector �⃗⃗̃� = (�̃�1, �̃�2) with �⃗⃗̃� =

𝛼�⃗⃗� + (1 − 𝛼)�⃗⃗̅�  then its corresponding state 

vector (solution) is �⃗̃� = (�̃�1, �̃�2) with �̃�𝑖 =
𝑦𝑖𝑢𝑖

= 𝑦𝑖(𝛼𝑢𝑖+(1− 𝛼)𝑢𝑖) = 𝛼𝑦𝑖 + (1 −  𝛼)�̅�𝑖, for 

each 𝑖 = 1,2. So we get the operator �⃗⃗� ⟼ �⃗��⃗⃗⃗� 

is convex – linear w.r.t. (�⃗�, �⃗⃗�) for each 

(𝑥, 𝑡)) ∈ 𝑄. 
 

On the other hand, the function 𝐺1(�⃗⃗�) is 

convex – linear w.r.t. (�⃗�, �⃗⃗�), ∀(𝑥, 𝑡) ∈ 𝑄, this 

back to the fact that the sum of two affine 

functions 𝑔1𝑖(𝑥, 𝑡, 𝑦𝑖, 𝑢𝑖) (∀ 𝑖 = 1,2) w.r.t. 

(𝑦𝑖, 𝑢𝑖) and ∀(𝑥, 𝑡) ∈ 𝑄 is affine and the 

operator �⃗⃗� ⟼ �⃗��⃗⃗⃗� is convex-linear. 

Also, since the functions 𝐺0(�⃗⃗�) and 𝐺2(�⃗⃗�) are 

convex w.r.t. (�⃗�, �⃗⃗�), ∀(𝑥, 𝑡) ∈ 𝑄 (from the 

assumptions on the functions 𝑔𝑙1 and 𝑔𝑙2, 
𝑙 =0,2 and from the fact that the sum of two 

integral of convex function is also convex). 

then 𝐺(�⃗⃗�) is convex w.r.t. (�⃗�, �⃗⃗�), ∀(𝑥, 𝑡) ∈ 𝑄 
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in the convex set �⃗⃗⃗⃗�, and has a continuous 

Fréchet derivative satisfies  

�́⃗� (�⃗⃗�)𝛿𝑢⃗⃗⃗⃗⃗ ≥ 0 ⟹  𝐺(�⃗⃗�) has a minimum at 

�⃗⃗�  ⟹ 𝐺(�⃗⃗�) ≤ 𝐺(�⃗⃗⃗�), ∀�⃗⃗⃗� ∈ �⃗⃗⃗⃗�  ⟹  𝜆0𝐺0(�⃗⃗�) +
𝜆1𝐺1(�⃗⃗�) + 𝜆2𝐺2(�⃗⃗�) 

≤ 𝜆0𝐺0(�⃗⃗⃗�) + 𝜆1𝐺1(�⃗⃗⃗�) + 𝜆2𝐺2(�⃗⃗⃗�)  
 

Let �⃗⃗⃗� ∈ �⃗⃗⃗⃗�𝐴, with 𝜆2 ≥ 0 and from the 

Transversality condition, we get 

𝜆0𝐺0(�⃗⃗�) ≤ 𝜆0𝐺0(�⃗⃗⃗�), ∀�⃗⃗⃗� ∈ �⃗⃗⃗⃗� ⇒  

𝐺0(�⃗⃗�) ≤ 𝐺0(�⃗⃗⃗�), ∀�⃗⃗⃗� ∈ �⃗⃗⃗⃗�, since  (𝜆0 > 0 )  

∴ �⃗⃗� is an optimal control for the problem. 
 

6. Conclusions 

The Galerkin method with the compactness 

theorem are used successfully to prove the 

existence and the uniqueness "continuous state 

vector" solution for a couple nonlinear 

parabolic partial differential equations for 

fixed continuous classical control vector. The 

existence theorem of a continuous classical 

optimal control vector governing by the 

considered couple of nonlinear partial 

differential equation of parabolic type with 

equality and inequality constraints is proved. 

The existence and the uniqueness solution of 

the couple of adjoint equations associated with 

the considered couple equations of the state is 

studied. The Frcéhet derivation of the 

Hamiltonian is derived. The necessary 

conditions theorem so as the sufficient 

conditions theorem of optimality of the 

constrained problem are developed and 

proved. 
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 الخلاصة
لزوج من  يهتم هذا البحث بمسألة وجود ووحدانية حل

المعادلات التفاضلية من النوع المكافئ باستخدام طريقة 
 Classical" كاليركن عندما يكون متجه السيطرة التقليدية

control vector" وجود ثابتا". يتناول ايضا" برهان لمبرهنة 
سيطرة امثلية مستمرة تقليدية بوجود قيدي التساوي وعدم 
التساوي. كذلك برهان مبرهنة وجود حل لزوج من المعادلات 

تم اشتقاق  .لمعادلات الحالة "Adjoint equations"الملحقة 
لدالة هاملتون الخاصة بهذه  "Frcéhet" مشتقة فريشيه

والكافية مبرهنتا الشروط الضرورية  المسالة. ايضا تم برهان
بوجود قيدي  لوجود متجه سيطرة امثلية مستمرة تقليدية

 .التساوي وعدم التساوي
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


