An Overview of Preparation for Different Azo Compounds
DOI:
https://doi.org/10.22401/3m6bbr80Keywords:
Azo dyes, azo groups, coupling of diazonium, chromophore, hydrophilic fibres, fastness, monoazoAbstract
Azo compounds are a class of organic materials that have the group R-N=N-R' where the substitution group R and R' are aromatic or heterocyclic sides. The azo compounds have a variety of applications including dyes, pigments, and pharmaceuticals. The preparation and characterization of different azo compounds is an important area of research in organic synthesis. The azo compound synthesis typically involves the diazotization process for coupling between an aromatic amine and another aromatic compound containing an activating group such as -OH, -NH2, or -NR2. The reaction conditions must be carefully controlled to prevent side reactions, such as the formation of unwanted byproducts. Once synthesized, azo compounds can be characterized using a variety of techniques including UV-Vis spectroscopy, NMR spectroscopy, and mass spectrometry. UV-Vis spectroscopy is a commonly used technique for characterizing azo compounds. The absorption spectrum of an azo compound typically exhibits a strong absorption band in the visible region due to the delocalized π-electrons in the azo group. While in FTIR, the loss of the amine peak and showing a weak peak at about 1550 cm− 1 for the (N = N) group, indicates the presence of Azo. The preparation and characterization of different azo compounds is a significant field of research in organic chemistry, which are applied as acid and base indicators, food coloring, optical switches, liquid crystal and in medicine. By carefully controlling the synthesis conditions and using a variety of characterization techniques, researchers can gain a better understanding of the properties and applications of these compounds.
References
Roglans, A.; Pla-Quintana, A.; Moreno-Manas M.; "Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions". Chem. Rev., 106: 4622-4643, 2006.
Zhu, L.; Lin, J.; Pei, L.; Luo, Y.; Li, D.; Huang Z.; “Recent advances in environmentally friendly and green degumming processes of silk for textile and non-textile applications”. Polymers, 14(4): 659, 2022.
Kubo, Y.; Maeda, S.Y.; Tokita S.; Kubo M.; "Colorimetric chiral recognition by a molecular sensor". Nature, 382: 522-524, 1996.
Pieraccini, S.; Masiero, S.; Spada, G.P.; Gottarelli, G.; "A new axially-chiral photochemical switch". Chem. Commun., 5: 598-599, 2003.
Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G.; “Green extraction of natural products. Origins, current status, and future challenges”. TrAC, Trends Anal. Chem., 118: 248-263, 2019.
Abbas, A.K.; Jber, N.R.; “Synthesis and Characterization of New Oxazepine Compounds and Estimation its Biological Activity”. ANJS, 23(3): 17-23, 2020.
Tundo, P.; Loris, A.; Selva, M.; "Formation and reaction of diazonium salts in a CO2/H2O system". Green Chem., 9: 777-779, 2007.
Dabbagh, H.A.; Teimouri, A.; Chermahini A.N.; "Green and efficient diazotization and diazo coupling reactions on clays". Dyes Pigm., 73: 239-244, 2007.
Hanusek, J.; Macháček, V.; Lyčka, A.; "Reaction of 2-naphthol with substituted benzenediazonium salts in [bmim][BF4]". Dyes Pigm., 73: 326-331, 2007.
Krasnokutskaya, E.A.; Semenischeva, N.I.; Filimonov, V.D.; Knochel P.; "A new, one- step, effective protocol for the iodination of aromatic and heterocyclic compounds via aprotic diazotization of amines". Synthesis, 2007: 81-84, 2007.
Garel, L.; Saint, J. L.; "One-pot fluoro-de-diazoniation of anilines in organic medium". Tetrahedron Lett., 47: 5705-5708, 2006.
Idris, M.A.; Lee, S.; “One-pot synthesis of pentafluorophenyl sulfonic esters via copper-catalyzed reaction of aryl diazonium salts, DABSO, and pentafluorophenol”. Org. Lett., 23: 4516-4520, 2021.
Zarei, A.; Hajipour, A.R.; Khazdooz, L.; Mirjalili, B.F.; Chermahini, A.N.; "Rapid and efficient diazotization and diazo coupling reactions on silica sulfuric acid under solvent-free conditions". Dyes Pigm., 81: 240-244, 2009.
Seferoğlu, Z.; Ertan, N.; Yılmaz, E.; Uraz G.; "Synthesis, spectral characterisation and antimicrobial activity of new disazo dyes derived from heterocyclic coupling components". Color. Technol., 124: 27-35, 2008.
Caldarelli, M.; Baxendale, I.R; Ley, S.V.; “Clean and efficient synthesis of azo dyes using polymer-supported reagents”. Green Chem., 2: 43-46, 2000.
Rossi, L.I.; Martın, S.E.; "Possible role of nitrate/nitrite redox cycles in catalytic and selective sulfoxidation reaction: metallic nitrates and bromides as redox mediators: a comparative study". Appl Catal A-Gen, 250: 271-278, 2003.
Kinen, C.O.; Rossi, L.I.; de-Rossi, R.H.; "Chemoselective oxidation of organic sulfides catalyzed by Fe (III) complexes". Appl. Catal. A-Gen., 312: 120-124, 2006.
Kinen, C.O.; Rossi, L.I.; de-Rossi, R.H.; "Mechanism of the selective sulfide oxidation promoted by HNO3/FeBr3". J. Org. Chem., 74: 7132-7139, 2009.
Kinen, C.O.; Rossi, L.I.; de-Rossi, R.H.; "The development of an environmentally benign sulfide oxidation procedure and its assessment by green chemistry metrics". Green Chem., 11: 223-228, 2009.
Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S.; "Classification of dye and pigments". In: Dyes Pigments. SpringerBriefs in Molecular Science., Springer, Cham. 31-45, 2016.
Lipskikh, O.I.; Korotkova, E.I.; Khristunova, Y.P.; Barek, J.; Kratochvil, B.; "Sensors for voltammetric determination of food azo dyes-a critical review". Electrochim. Acta, 260: 974-985, 2018.
Matsuoka, M.; "Infrared absorbing dyes". 1st ed.; Springer Science & Business Media: New York, 1990.
El-Harfi, S.; El-Harfi, A.; "Classifications, properties and applications of textile dyes: A review". Appl. J. Environ. Eng. Sci., 3: 00000-3, 2017.
Elshaarawy, R.F.; Sayed, T.M.; Khalifa, H.M.; El-Sawi E.A.; "A mild and convenient protocol for the conversion of toxic acid red 37 into pharmacological (antibiotic and anticancer) nominees: Organopalladium architectures". C. R. Chim., 20: 934-941, 2017.
Zhao, R.; Tan, C.; Xie, Y.; Gao, C.; Liu, H.; Jiang, Y.; "One step synthesis of azo compounds from nitroaromatics and anilines". Tetrahedron lett., 52: 3805-3809, 2011.
Mezgebe, K.; Mulugeta, E.; “Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: a review”. RSC adv., 12(40): 25932-25946, 2022.
Al-Rubaie, L.A.A.R.; Mhessn, R.J.; "Synthesis and characterization of azo dye para red and new derivatives". J. Chem., 9: 465-470, 2012.
Rauf, M.A.; Meetani, M.A.; Hisaindee, S.; "An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals". Desalination, 276: 13-27, 2011.
Benkhaya, S.; M'rabet, S.; El-Harfi, A.; “Classifications, properties, recent synthesis and applications of azo dyes”. Heliyon, 6(1): e03271, 2020.
Duan, H.; Li L.; Wang, X.; Wang, Y.; Li, J.; Luo, C.; "CdTe quantum dots@ luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor". Spectrochim. Acta. Part A., 153: 535-541, 2016.
Rashmi, W.; Danial, A. Z.; Mohammad, K.; Priyanka, J.; Nabisab, M.M.; Gupta, T.; “Stability, thermo-physical and electrical properties of naphthenic/POME blended transformer oil nanofluids”. Therm. Sci. Eng., 23: 2021.
Karunya, A.; Rose, C.; Nachiyar, C.V.; "Biodegradation of the textile dye Mordant Black 17 (Calcon) by Moraxella osloensis isolated from textile effluent-contaminated site". World J. Microbiol. Biotechnol., 30: 915-924, 2014.
Zhang, X.; Yang, Q.; Lang, Y; Jiang, X.; Wu, P.; "Rationale of 3,3', 5,5'- Tetra-methylbenzidine as the Chromogenic Substrate in Colorimetric Analysis". Anal. Chem. 92: 12400–12406, 2020.
Mulliken, S.P.; "A Method for the Identification of Pure Organic Compounds by a Systematic Analytical Procedure Based on Physical Properties and Chemical Reactions". J. Wiley & sons, Incorporated, 2: 1916.
Forster, A.L.; Bitter, J.L.; Rosenthal, S.; Brooks, S.; Watson, S.S.; "Photofading in cotton fibers dyed using red, yellow, and blue direct dyes during examination with microspectrophotometry (MSP) ". Forensic Chem., 5: 72-78, 2017.
Xie, K.; Gao, A.; Li, C.; Li M.; "Highly water-soluble and pH-sensitive colorimetric sensors based on a D–π–A heterocyclic azo chromosphere". Sens. Actuators B. Chem., 204: 167-174, 2014.
Jber, N.R.; Abood, R.S.; Al-Dhaief, Y.A.; “Synthesis and Spectral Study of New Azo - Azomethine Dyes and its Copper (II) Complexes Derived from Resorcinol, 4-Aminobenzoylhydrazone and 4-Amino antipyrine”. ANJS, 14: 50-56, 2011.
Jarallah, H.M.; Kadhum, M.Y.; Abdulnabi, A.S.; “Synthesis, Spectral and Thermal Studies of New Azo Dyes Complexes Derived From 3-tert-butyl-4-hydroxyanisol”. J. Kufa Chem. Sci., 2(8): 144-156, 2022.
Mousa, A.A.; "Synthesis and application of a polyfunctionalbis(monochlorotriazine/sulphatoethylsulphone) reactive dye". Dyes Pigm., 75: 747-752, 2007.
Wojciechowski, K.; Anna, W.; "Substantivity and spatial structure of soluble polycyclic dyes for dyeing cellulose fibres." Dyes and pigments 65: 111-116, 2005.
Sidney, B.; Jonas, F.; Stefan, W.; Hidenori O.; “Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides”. Science, 4: 76-82, 2019.
Amira, E.; Reda, E.; Abd-Elgawad, R.; “Electrochemical studies on the binding of the sulfonated reactive dye Levafix Royal Blue E-FR with DNA”. J. Iran. Chem. Soc., 19: 4253–4260, 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Shayma M. Ahmad, Zahraa S. Al-Taie, Mohammed Hussein, Rana A. Hammza, Mulia Rahmansyah, Muna Bufaroosha, Emad Yousif
This work is licensed under a Creative Commons Attribution 4.0 International License.