AutoKeras for Fake News Identification in Arabic: Leveraging Deep Learning with an Extensive Dataset
Keywords:
AutoKeras, AutoML, Deep learning, Fake newsAbstract
Social media and the World Wide Web have led to a worrying rise in spreading false information, which presents a significant worldwide issue. Identifying and preventing false information is crucial in promoting an informed and knowledgeable society. The identification of false information, specifically in the Arabic dialect, presents inherent difficulties due to its diverse characteristics and linguistic intricacies. This study implements AutoKeras, a deep learning-based machine learning framework. Using advanced optimization techniques, the neural network architecture search, hyperparameter adjustments, and model selection can all be automated in AutoKeras. Therefore, it is suitable for our fake news detection task. The methodology employs proficient deep learning algorithms and natural language processing methods to acquire distinct characteristics that enable accurate differentiation between genuine and fake news. The present study uses various sources, including news websites, social media platforms, and blogs, to construct the dataset. The AutoKeras-based approach is superior to multiple state-of-the-art approaches to detecting fabricated news in Arabic, as evidenced by the experimental results. The suggested method outperforms 93.2% accuracy in identifying fake news, demonstrating its superior efficacy. This demonstrates the great promise of the deep learning-based Auto model for detecting false information.
References
Fatema, A.; Shaikhah, A.; Aisha, A.; Amal, E.; Monther, A.; "FALSE: Fake News Automatic and Lightweight Solution";
https://arxiv.org/abs/2208.07686v1, 2022.
Reham, J.; Suhad, A.Y.; "Fake News Classification Using Random Forest and Decision Tree (J48)"; ANJS 23(4), 49-55, 2020.
Zhixuan, Z.; Huankang, G.; Meghana, M.B.; Justin, H.; "Fake news detection via NLP is vulnerable to adversarial attacks". arXiv:1901.09657, 2019.
Reham, J.; Suhad, A.Y.; "Classification of fake news using multi-layer perceptron". AIP Conf. Proc. 2334(1): 2021.
Nishant, R.; Deepika, K.; Naman, K.; Chandan, R.; Ahad, A.; "Fake News Classification using transformer based enhanced LSTM and BERT". Int. J. Cogn. 3: 98-105, 2022.
Pritika, B.; Preeti, S.; Raj, K.; "Fake news detection using bi-directional LSTM-recurrent neural network". Procedia Comput. Sci. 165: 74-82, 2019.
Youssef, T.; Adelmoutalib, M.; Fouad, M.; "Automatic fake news detection based on deep learning, FasTtext and news title". IJACSA 13(1): 2022.
Ghaith, J.; Hamed, A.; Momen, B.; Douglas, J.; "Classifying Arabic Tweets Based on Credibility Using Content and User Features". JEEIT: 596–601, 2019.
Tahseen, A. W.; Ban, N. D.; "Improving Prediction of Arabic Fake News Using Fuzzy Logic and Modified Random Forest Model". Karbala Int. J. Mod. Sci. 8(3): 477-485, 2022.
Jude, K.; "Stance prediction and claim verification: An Arabic perspective"; arXiv:2005.10410, 2020.
Sahar, F. S. and Sumaia, Y. B.; "Arabic news credibility on Twitter: An enhanced model using hybrid features". J. Theor. Appl. Inf. Technol. 96(8): 2018.
Khaled, M.F.; Sahar, F.S.; Walaa, M.; "Arabic Fake News Detection Using Deep Learning". Comput. Mater. Contin. 71(2): 2022.
Venus, W.S.; Suhad, A. Y.; Nadia, M. G.; "Intrusion Detection System: An Automatic Machine Learning Algorithms Using Auto-WEKA". 2022 IEEE 13th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 42-46, 2022.
Redha, A.A.; Suhad, A.Y.; "High performance time series models using auto autoregressive integrated moving average". Indones. J. Electr. Eng. Comput. 27: 422-430, 2022.
Suhad, A.Y.; Venus, W.S.; Nadia, M.G.; "Automatic Machine Learning Classification Algorithms for Stability Detection of Smart Grid". BDAI: 34-39, 2022.
Lin, Z.C.; "How Can Machine Learning and Optimization Help Each Other Better?". J. Oper. Res. Soc. 8(2): 341-351, 2020.
Mustafa, A.; Rahimi, A.M.; "Automated machine learning for healthcare and clinical notes analysis"; Comp. 10(2): 24, 2021.
Haifeng, J.; Francois, C.; Qingquan, S.; Xia, H.; "AutoKeras: An AutoML Library for Deep Learning"; J. Mach. Learn. Res. 24(6): 1-6, 2023.
Qingquan, S.; Haifeng, J.; Xia, H.; "Automated Machine Learning in Action". MEAP, 2022.
Ashwaq, K.; Moath, J.; Monther, A.; Manar, J.; "AFND: Arabic fake news dataset for the detection and classification of articles credibility". Data Br. 42, 2022.
Taha, Z.; "Tashaphyne, Arabic light stemmer"; pypi.python.org/pypi/Tashaphyne/0.2, 2012.
Muhammad, F.M.; Ashfia, J.K.; Abdul, M.H.; Muhammad, M.M.; Saifur, M.R; "A comprehensive review on fake news detection with deep learning". IEEE Access 9: 156151-156170, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Raed S. Matti, Suhad A. Yousif
This work is licensed under a Creative Commons Attribution 4.0 International License.