Efficiency Evaluation of Popular Deepfake Methods Using Convolution Neural Network

Authors

  • Noor Kadhem Department of Computer Science, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Mohammed Altaei Department of Computer Science, College of Science, Al-Nahrain University, Baghdad, Iraq

Keywords:

Convolution neural network (CNN), Deepfake Detection, Deep learning, Deepfake Methods, Video deepfake

Abstract

Many deepfake techniques in the early years are spread to create successful deepfake videos (i.e., FaceSwap, DeepFake, etc.). These methods enable anyone to manipulate faces in videos, which can negatively impact society. One way to reduce this problem is the deepfake detection. It has become such a hot topic and the most crucial task in recent years. This paper proposes a deep learning model to detect and evaluate deepfake video methods using convolutional neural networks. The model is evaluated on the FaceForensics++ video dataset that contains four different deepfake ways (deepfake, face2face, faceswap, and neuraltexture), and it achieved 0.96 accuracy on the deepfake method, 0.95 accuracy on face2face approach, 0.94 precision on faceswap method and 0.76 accuracy on neuraltexture method.

References

Deng, L.; Suo, H.; Li, D.; "Deepfake video detection based on EfficientNet-V2 network,". Comput. Intell. Neurosci, 2022, 2022.

Nguyen, T.T.; Nguyen, Q. V. H.; Nguyen, D.T.; Nguyen, D. T.; Huynh-The, T. ; Nahavandi, S. et al.; "Deep learning for deepfakes creation and detection: A survey,". Comput. Vis. Image Underst., 223: 103525, 2022.

Bonettini, N. ; Cannas, E.D. ; Mandelli, S.; Bondi, L.; Bestagini, P.; Tubaro, S.; "Video face manipulation detection through ensemble of cnns," in 2020 25th of ICPR,5012-5019,2021.

Mahmud, B.U.; Sharmin, A.; "Deep insights of deepfake technology: A review". ArXiv.org:2105.00192, 2021.

Yu, P.; Xia, Z.; Fei, J.; Lu, Y.; "A survey on deepfake video detection,". IET Biom., 10: 607-624, 2021.

Abu-Ein, A.A.; Al-Hazaimeh, O.M. ; Dawood, A.M.; Swidan, A.I.; "Analysis of the current state of deepfake techniques-creation and detection methods". IJEECS, 28: 1659-1667, 2022.

Johansson, E.; "Detecting deepfakes and forged videos using deep learning". Master's Theses in Mathematical Sciences, 2020.

Verdoliva, L.; "Media forensics and deepfakes: an overview". IEEE J. Sel. Top. Signal Process., 14: 910-932, 2020.

Li, Y. ; Yang, X. ; Sun, P. ; Qi, H.; Lyu, S.; "Celeb-df: A large-scale challenging dataset for deepfake forensics," in Proceedings of IEEE/CVF: 3207-3216, 2020.

Jafar, M. T.; Ababneh, M.; Al-Zoube, M.; Elhassan, A.; "Forensics and analysis of deepfake videos". 11th of ICICS, 053-058, 2020.

Güera, D.; Delp, E.J.; "Deepfake video detection using recurrent neural networks". in 2018 15th IEEE international conference on AVSS,1-6, 2018.

Masood, M.; Nawaz, M.; Javed, A.; Nazir, T.; Mehmood, A.; Mahum, R.; "Classification of Deepfake videos using pre-trained convolutional neural networks," ICoDT2, 1-6, 2021.

Vamsi, V.V.V.N.S.; Shet, S.S.; Reddy, S.S.M.; Rose, S.S.; Shetty, S.R.; Sathvika, S., et al.; "Deepfake detection in digital media forensics". Glob. Transit., vol. 3,74-79, 2022.

Mitra, A.; Mohanty, S.P.; Corcoran, P.; Kougianos, E.; "A novel machine learning based method for deepfake video detection in social media". IEEE International Symposium on iSES (Formerly iNiS), 91-96, 2020.

Shende, A.; "Using deep learning to detect deepfake videos". TURCOMAT, 12: 5012-5017, 2021.

Wodajo, D.; Atnafu, S.; "Deepfake video detection using convolutional vision transformer". ArXiv.org:2102.11126, 2021.

Rana, M.S. ; Murali, B.; Sung, A.H.; "Deepfake Detection Using Machine Learning Algorithms". 10th International Congress on IIAI-AAI, 458-463, 2021.

Nie{ss}ner, A. R. o. a. D. C. a. L. V. a. C. R. a. J. T. a. M. (2019). Face{F}orensics++: Learning to Detect Manipulated Facial Images. Available: https://github.com/ondyari/FaceForensics

Thies, J.; Zollhofer, M.; Stamminger, M.; Theobalt, C.; Nießner, M.; "Face2face: Real-time face capture and reenactment of rgb videos". Proceedings of the IEEE/ CVPR,2387-2395, 2016.

Downloads

Published

2023-09-18

Issue

Section

Articles

How to Cite

(1)
Efficiency Evaluation of Popular Deepfake Methods Using Convolution Neural Network. ANJS 2023, 26 (3), 44-50.