Automated Face Mask Detection using Pretrained CNN
Keywords:
CNN, COVID-19, Face Mask Detection (FMD), SARSAbstract
In recent times, the use of face masks has emerged as a critical subject. Automated facial mask detection holds the potential to curb the transmission of the COVID-19 virusand SARS-VIRUS within communal areas through the identification of individuals who are not utilizing masks. In this work, a pretrained Convolutional Neural Network (CNN), ResNet-50 utilized, which was initially trained on the ImageNet competition data. This model is augmented with a 300-linear layer network ,and fine-tuned on a dataset that is well-balanced comprising 1,000 facial images. During the evaluation of the validation dataset consisting of approximately 800 face images, the model achieved an impressive 99% accuracy. Its primary objective is to ascertain if an individual is wearing a facial mask using a cropped image of their face. By leveraging such advanced technologies, we can contribute significantly to public health and safety measures in the ongoing battle against COVID-19 and SARS-VIRUS.
References
Tandon, R.; Sayed, A.; Hashmi, M.A.; "Face Mask Detection Model Based on Deep CNN Technique Using AWS". Int. J. Eng. Res. Appl., 13(5): 12-19, 2023.
Kumar, P.; Gupta, V.K.; Singh, D.P.; "Face Mask Detection Using Convolution Neural Network". ICICT-2022,IEEE: 1-6, 2022.
He, K.; Zhang, X.; Ren, S.;, Sun, J.; "Deep Residual Learning For Image Recognition". Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.: 770-778, 2016.
Soni, A.; Rai, A.; "YOLOv4: A Face Mask Detection System". Int. Res. J. Eng. Technol., 9(9), 2022.
Patil, R.; Patil, S.; Kazi, A.A.; "Face Mask Detection Using AI". High Technol. Lett., 28(4): 469-475, 2022.
Shukla, S.K.; Singh, P.; Haswani, D.; Khare, S.; Gupta, A.; "Face Mask Detection Using Machine Learning". Int. J. Mod. Trends Sci. Technol., 8(06): 132-136, 2022.
Öztürk, G.; Eldoğan, O.; Karayel, D.; ATALI, G.; "Face Mask Detection on LabVIEW". AITA, 1(2),: 9-18, 2021.
Kowalczyk, N.; Sobotka, M.; Rumiński, J. J. I. A.; "Mask Detection and Classification in Thermal Face Images". IEEE Access,11: 43349-43359, 2023.
Ge, C.X.; As’ari, M.A.; Sufri, N.A.; "Multiple face mask wearer detection based on YOLOv3 approach". IAES Int. J. Artif. Intell., 12(1): 384-393, 2023.
Handoko; Rozy, F.; Gani, F.E.; Dharma, A.; "Comparative Analysis of Convolutional Neural Network Methods in Detecting Mask Wear". Budapest Int. Res. Critics. Inst. J., 5(2): 16792-16801, 2022.
Zhang, Y.; Al-Ataby, A.; Al-Naima, F.; "A Deep Learning-Based Tool for Face Mask Detection and Body Temperature Measurement". IEEE, 2023, DOI: 10.1109/ICSPIS57063.2022.10002688.
Yapıcı, M.M.; Tekerek, A.; Topaloglu, N.; "Performance comparison ˘ of convolutional neural network models on gpu". AICT: 1–4, 2019.
Cao, Q.; Shen, L.; Xie, W.; Parkhi, O.M.; Zisserman, A.; "Vggface2: A Dataset for Recognising Faces Across Pose and Age". IEEE: 67-74, 2018.
Olivas, E.S.; Guerrero, J.D.M.; Sober, M.M.; Benedito, J.R.M.; Lopez, A.J.S.; "Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods and Techniques, 2 Volumes". Inf. Sci., Imprint of: IGI Publishing, Hershey, PA, 2009.
Kirandeep, K.R.; Dhir, V.; "Image Recognition Using Resnet50". Eur. Chem. Bull., 12(S3): 7533 – 7538, 2023.
Lin, C.; Wu, K.; "Development of Revised ResNet-50 for Diabetic Retinopathy Detection". BMC Bioinform., 24(1): 1-18, 2023.
Celano, G.; "A ResNet-50-based Convolutional Neural Network Model for Language ID Identification from Speech Recordings". NLP: 136-144, 2021.
Suherman, E.; Rahman, B.; Hindarto, D.; Santoso, H.; "Implementation of ResNet-50 on End-to-End Object Detection (DETR) on Objects". Sinkron: J. Penelit. Tek., 8(2): 1085-1096, 2023.
Muhathir, R.M.; Syah, R.; Khairina, N.; Muliono, R.; "Convolutional Neural Network (CNN) of Resnet-50 with Inceptionv3 Architecture in Classification on X-Ray Image". CSOC, pp. 208-221: 2023.
Rachman, S.; Bagaskara, D.; Magdalena, R.; Sa’idah, S.; "Classification of Pneumonia Based on X-Ray Images with ResNet-50 Architecture". ICEBEHI 2022, 5–6 October, pp. 117-130: Springer , 2023.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Al-Nahrain Journal of Science
This work is licensed under a Creative Commons Attribution 4.0 International License.