The Efficiency of Titanium-Graphite Electrode Cells in the Presence of Ionic Liquids and Deep Eutectic Solvents as Electrolytes
Keywords:
Ionic liquids, Deep eutectic solvents, Aluminum chloride, Titanium, BatteriesAbstract
Prior to the start of production, several factors must be considered, including the price, effectiveness, and environmental friendliness of batteries. Ionic liquids and deep eutectic solvents have shown significant success when employed as electrolytes with Titanium-graphite cells, especially when combined with additives that enhance their conductivity by reducing the high viscosity of these liquids. Evaluating the discharge voltage of the AlCl3-chloroacetamide IL with DCM as an additive revealed a voltage of 1.16V and an internal resistance of 11 Ohm. These electrochemical cells exhibited an intriguing response. Otherwise, when utilizing CaCl2.2H2O: Acetamide DES with DI water as an additive, the cell voltage measured 0.97V, with an internal resistance of 23 Ohm. Moreover, these cells demonstrated thermal stability during both charging and discharging processes, which can be attributed to the concentration and quality of the ionic species. Furthermore, the surfaces of the Titanium electrodes were examined using FESEM and EDXA equipment to assess the impact of the ionic liquid and DES on these electrodes.
References
Yang Z.; Zhang J.; Kintner-Meyer M.; Lu X.; Choi D.; Lemmonet j.; "Electrochemical Energy Storage for Green Grid". Chem. Rev., 111(5): 3577-3613, 2011.
Liu Q.; Wang H.; Jiang C.; Tang Y.; "Multi-ion strategies towards emerging rechargeable batteries with high performance". Energy Stor. Mater., 23: 566-586, 2019.
Dunn B.; Kamath H.; Tarascon J.; "Electrical energy storage for the grid: a battery of choices". Sci., 334: 928–935, 2011.
Michael M. T.; Sun-Ho K.; Christopher S.; John T.; “Li 2 MnO 3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries”. J. Mater. Chem., 17(30): 3112-3125, 2007.
Jos F.O.; Loïc B.; Peter H.N.; “All‐solid‐state lithium‐ion microbatteries: a review of various three‐dimensional concepts”. Adv. Energy Mater., 1(1): 10-33, 2011.
Kim D.; Muralidharan P.; Lee H.; “Spinel LiMn2O4 Nanorods as Lithium-Ion Battery Cathodes". Nano Lett., 8(11): 3948-3952, 2008.
Wang D.; Wei C.; Lin M.; “Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode". Nat. Commun, (8): 14283, 2017.
Lin M.; Gong M.; Lu B. "An ultrafast rechargeable aluminum-ion battery". Nature, 520(1): 324-328, 2015.
Kerman K.; Luntz A.; Viswanathan V.; “Review Practical Challenges Hindering the Development of Solid-State Li Ion Batteries”. J. Electrochem. Soc. 164(7): A.1731, 2017.
Yang H.; Li H.; Li J.; “The rechargeable aluminum battery: opportunities and challenges”. Angew. Chem. Int. Ed., 58(35): 11978–11996, 2019.
Elia A.; Marquardt K.; Hoeppner K.; “An over view and future perspectives of aluminum batteries”. Adv. Mate., 28(35): 7564–7579, 2016.
Dong X.; Xu H.; Chen H.; “Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery”. Carbon, (148): 134–140, 2019.
Zhang C.; He R.; Zhang J.; “Amorphous carbon-derived nanosheett-bricked porous graphite as high-performance cathode for aluminum-ion batteries”. ACS Appl. Mater. Interfaces, 10(31): 26510–26516, 2018.
Wei J.; Chen W.; Chen D.; Yang K.; “An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries”. J. Mater. Sci. Technol., 34(6): 983–989, 2018.
Wang D.; Wei C.; Lin M.; “Advanced rechargeable aluminum ion battery with a high-quality natural graphite cathode”. Nat. Commun., (8): 14283, 2017.
Kravchyk K.; Wang S.; Piveteau L.; Kovalenko M.; “Efficient aluminum chloride–natural graphite battery”. Chem. Mater., 29(10): 4484–4492, 2017.
Choi S.; Go H.; Lee G.; Tak Y.; “Electrochemical properties of aluminum anode in ionic liquid electrolyte for rechargeable aluminum-ion battery”. PCCP, 19(13): 8653–8656, 2013.
Lee D.; Lee G.; Tak Y.; “Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery”. Nat. Nanotechnol., 29(36): LT01, 2018.
Wu F.; Zhu N.; Bai Y.; Wu C.; “An inter face reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances”. GEE, 3(1): 71–77, 2018.
Wang H.; Gu S.; Bai Y.; “A high voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery”. ACS Appl. Mater. Interfaces, (8): 27444–27448, 2016.
Hasan B.B.; Abood M.A.; Mohamed S.N.; “Effect of Some Aluminum Salts - Amine Ionic Liquids on Several Serum Human Parameters and Bacterial Growth of Klebsiella pneumoniae and Staphylococcus aureus”. ANJS, 21(1): 14- 22, 2018.
Hasan B.B.; Abood M.A.; Mohamed S.N.; “Preparation and characterization of deep eutectic solvent: Physical properties and electrochemical studies". AIP Conf Proc. 2398, 030009/10.1063/5.0095413, 2022.
Abood H.; Abbott A.; Ballantyne A.; Ryder K.; ''Do all ionic liquids need organic cations? Characterization of [AlCl2.nAmide] + AlCl4– and comparison with imidazolium-based system''. Chem. Commun, (47): 3523-3525, 2011.
Hasan B.B.; Salman T.A.; "Using a Streamlined Procedure to Combine AlCl3 and Chloroacetamide to Create a New Ionic Liquid". ANJS, 26(2): 19-22, 2023.
Hasan B.B.; Salman T.A.; “Environmentally friendly aluminum-graphite battery cells based on ionic liquids and deep Eutectic solvents as electrolytes with some additives”. BioGecko, 12(1): A. 2230-5807, 2023.
Wenjing L.; Zhaofu Z.; Buxing B.; Guanying Y.; “Effect of Water and Organic Solvents on the Ionic Dissociation of Ionic Liquids”. J. Phys. Chem, (111): 6452-6456, 2007.
Moral C.; Laborda D.; Alonso L.; Reigosa D.; “Battery internal resistance estimation using a battery balancing system based on switched capacitors”. IEEE, 56(5): 5363 – 5374, 2020.
Sloovere D.; Vanpoucke D.; Calvi L.; “Deep Eutectic Solvents as Nonflammable Electrolytes for Durable Sodium-Ion Batteries”. Adv. Energy Sustain. Res, (3): A. 2100159, 2022.
Abbott A.; Qiu F.; H. Abood M. A.; Aliac M.; Ryder K.; “Double layer, diluent and anode effects upon the electrodeposition of aluminum from chloroaluminate based ionic liquids”. PCCP, (12): 1862–1872, 2010.
Annika S.; Daniel K.; Cedric J.; Stefan E.; Frank L.; Michael K.; “Thermal Electrical Tests for Battery Safety Standardization”. Energies, 15(21): 7930, 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Al-Nahrain Journal of Science
This work is licensed under a Creative Commons Attribution 4.0 International License.