Synthesis of Some Carboxylate Tetraethylammonium Salts as Ionic Liquids
Keywords:
Ammonium salts, DSC, Ionic liquids, ConductivityAbstract
Some of organic ammonium salts, namely: 2-((4-carboxyphenyl) carbamoyl) benzoate tetraethylammonium, B1, 4-oxo-4-(pyridin-3-ylamino)-2-butenoate tetraethylammonium, B2, 2-((4-carbamoylphenyl) carbamoyl) benzoate tetraethylammonium, B3, 4-((4-carbamoylphenyl)amino)-4-oxobutanoate tetraethylammonium, B4, are successfully synthesized as ionic liquids. By spectral techniques of FTIR, 1H-NMR and 13C-NMR the structures of organic salts are confirmed. The thermal analysis by differential scanning calorimetry (DSC) has shown the thermal stability of the organic ammonium salts (B1-B4). A high conductivity characteristic as compared with that of NaCl has been detected in the aqueous solution.
References
Gagandeep K.; Harsh K.; Meenu S.; “Diverse applications of ionic liquids: A comprehensive review”. J. Mol. Liq., 351:118556, 2022.
Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z.; “Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications”. Chem. Rev., 117 (10): 6881–6928, 2017.
Fabre E.; Murshed S., M.,S.; “A review of the thermophysical properties and potential of ionic liquids for thermal applications”. J. Mater. Chem. A., 9: 15861-15879, 2021.
Gurkan, B.E.; de la Fuente, J.; Mindrup, E. M.; Ficke, L. E.; Goodrich, B. F.; Price, E. A.; Schneider, W. F.and Brennecke, J. F.; “ Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids”. J. Am. Chem. Soc., 132: 2116−2117, 2010.
Qian, W.; Texter, J.; Yan, F.; “Frontiers in Poly(ionic liquid)s: Syntheses and Applications”. Chem. Soc. Rev., 46: 1124−1159, 2017.
Wickramanayake, S.; Hopkinson, D.; Myers, C.; Hong, L.; Feng, J.; Seol, Y.; Plasynski, D.; Zeh, M.; Luebke, D.; “Mechanically Robust Hollow Fiber Supported Ionic Liquid Membranes for CO2 Separation Applications”. J. Membr. Sci. 470: 52−59, 2014.
Khan, N. A.; Hasan, Z.; Jhung, S. H.; “Ionic Liquids Supported on Metal-Organic Frameworks: Remarkable Adsorbents for Adsorptive Desulfurization”. Chem. Eur. J. 20: 376−380, 2014.
Marek, K.; Gustafsson, J.; Jarl, B. R.; “Thermal stability of low temperature ionic liquids revisited”. Thermochim. Acta, 412, (1–2): 47-53, 2004.
Helen, L. N.; Karen, L.; Liesl, H.; Alan. B. M., “Thermal properties of imidazolium ionic liquids”. Thermochim. Acta, 357–358: 97-102, 2000.
Jean, C. B. V.; Marcos, A. V.; Clarissa, P. F., “Thermal stability and decomposition mechanism of dicationic imidazolium-based ionic liquids with carboxylate anions”. J. Mol. Liqs., 330: 115618, 2021.
Paul, N.; Amani, A.; Dhruve, K.M.; Sandra, D.; “Comprehensive analysis and correlation of ionic liquid conductivity data for energy applications”. Ener., 220: 119761, 2021.
Avid, A.; Ochoa, J. L.; Huang, Y.; “Revealing the role of ionic liquids in promoting fuel cell catalysts reactivity and durability”. Nat. Commun. 13: 6349, 2022.
Ling, M.; Ziyang S.; Dazhang, Z.; Liangchun L.; Lihua, G.; Mingxian, L.; “Ionic Liquids for Supercapacitive Energy Storage: A Mini-Review”. Ener. Fus., 35 (10): 8443-8455, 2021.
Marcelo, P.S.; Günter, E.; Renato, C.; Jairton D.; “Hydrogen-Storage Materials Based on Imidazolium Ionic Liquids”. Ener. Fus., 21(3): 1695-1698, 2007.
Elham J. ; Najmeh T.N.; Ali J.N.; Safoora P.; Farshid H.; Sedighe S.R.; “Synthesis and evaluation of antimicrobial activity of cyclic imides derived from phthalic and succinic anhydrides”. Res Pharm Sci., 12 (6): 526–534, 2017.
Yassin F.A.; El Kady F.Y.; Ahmed H.S.; Mohamed L.; Shaban S.A.; Elfadaly A.K.; “Highly effective ionic liquids for biodiesel production from waste vegetable oils”. Egy. J. Petrol., 24(1): 103-111, 2015.
Yuan, W., Yang, X., He, L., Xue, Y., Qin, S.; Tao, G.; “Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids”. Front. Chem., 6: 317021, 2018.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muna Raad Mahmood, Mehdi Salih Shihab
This work is licensed under a Creative Commons Attribution 4.0 International License.