Coagulation Process Followed SARS-Cov2 Infection and Vaccination

Authors

  • Yasir W. Issa College of Biotechnology, Al-Nahrain University, Jadiriya, Baghdad, Iraq. Department of Anesthetic Techniques, Madenat Alelem University College, Baghdad, Iraq.
  • Shahlaa M. Salih College of Biotechnology, Al-Nahrain University, Jadiriya, Baghdad, Iraq.
  • Ola Khudhair College of Biotechnology, Al-Nahrain University, Jadiriya, Baghdad, Iraq.

Keywords:

COVID-19 , PT, PTT, INR , D-Dimer , Platelets , Vaccines

Abstract

SARS-CoV-2, or COVID-19, a rapidly spreading coronavirus, leads to severe acute respiratory syndrome. In severe cases, hypercoagulability and inflammation significantly contribute to poor outcomes and mortality. This study investigated the coagulation process post-vaccination and infection in Iraq. A case-control study with 450 Iraqi participants included 90 healthy controls, 90 Pfizer vaccine recipients, 90 AstraZeneca vaccine recipients, 90 Sinopharm vaccine recipients, and 90 unvaccinated, infected individuals. Subgroups were followed up at 1, 2, and 3 months post-vaccination or infection to analyze plasma PT, PTT, INR, blood platelets, and D-Dimer. Significant differences were observed in D-Dimer levels among groups (p=0.000). Higher platelet counts were seen in infected patients, followed by AstraZeneca recipients (p<0.05). Thrombocytopenia was noted in Pfizer recipients in the first three months. A significant drop in PT and PTT was recorded in hospitalized patients one month post-infection, with no significant differences thereafter or in other groups (p>0.05). COVID-19 severity correlates with fibrin and fibrinolytic activity. AstraZeneca recipients showed a higher risk of coagulation and fibrin formation compared to Pfizer and Sinopharm recipients, highlighting the potential need for anticoagulants to mitigate risks.

References

Abdel-Bakky, M.S.; Amin, E.; Ewees, M.G.; Mahmoud, N.I.; Mohammed, H.A.; Altowayan, W.M.; et al.; "Coagulation System Activation for Targeting of COVID-19: Insights into Anticoagulants, Vaccine-Loaded Nanoparticles, and Hypercoagulability in COVID-19 Vaccines". Viruses, 14(2): 1887–1898, 2022.

Alturaiki, W.; Alkadi, H.; Alamri, S.; Awadalla, M.E.; Alfaez, A.; Mubarak, A.; et al.; "Association between the expression of toll-like receptors, cytokines, and homeostatic chemokines in SARS-CoV-2 infection and COVID-19 severity". Heliyon, 9(1): 2405–8440, 2023.

Ayodele, O.O.; Onajobi, F.D.; Osoniyi, O.; "In vitro anticoagulant effect of Crassocephalum crepidioides leaf methanol extract and fractions on human blood". J. Exp. Pharmacol., 11: 99–107, 2019.

Schmitt, F.C.F.; Manolov, V.; Morgenstern, J.; Fleming, T.; Heitmeier, S.; Uhle, F.; et al.; "Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: results of an observational pilot study". Ann. Intensive Care, 9(1): 1-15, 2019.

Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; et al.; "COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review". J. Am. Coll. Cardiol., 75(23): 2950–73, 2020.

Galluccio, F.; Ergonenc, T.; Garcia, Martos, A.; Allam, A.E.S.; Pérez-Herrero, M.; Aguilar, R., et al.; "Treatment algorithm for COVID-19: a multidisciplinary point of view". Clin. Rheumatol., 39(7): 2077–84, 2020.

Lin, L.; Lu, L.; Cao, W.; Li, T.; "Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia". Emerg. Microbes Infect., 9(1): 727–32, 2020.

Kwaan, H.C.; Lindholm, P.F.; "The central role of fibrinolytic response in covid‐19— a hematologist’s perspective". Int. J. Mol. Sci., 22(3): 1–16, 2021.

Levy, J.H.; Iba, T.; Olson, L.B.; Corey, K.M.; Ghadimi, K.; Connors, J.M.; "COVID-19: Thrombosis, thromboinflammation, and anticoagulation considerations". Int. J. Lab. Hematol., 43(S1): 29–35, 2021.

McFadyen, J.D.; Stevens, H.; Peter, K.; "The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications". Circ. Res., 127(4): 571–87, 2020.

Becker, R.C.; "COVID-19 update: Covid-19-associated coagulopathy". J. Thromb. Thrombolysis, 50(1): 54–67, 2020.

Talotta, R.; Robertson, E.S.; "Antiphospholipid antibodies and risk of post-COVID-19 vaccination thrombophilia: The straw that breaks the camel’s back?". Cytokine Growth Factor Rev., 60: 52–60, 2021.

Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; et al.; "Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis". J. Thromb. Haemost., 18(7): 1738–42, 2020.

Boscolo, A.; Spiezia, L.; Correale, C.; Sella, N.; Pesenti, E.; Beghetto, L.; et al.; "Different Hypercoagulable Profiles in Patients with COVID-19 Admitted to the Internal Medicine Ward and the Intensive Care Unit". Thromb. Haemost., 120(10): 1474–7, 2020.

Polycarpou, A.; Howard, M.; Farrar, C.A.; Greenlaw, R.; Fanelli, G.; Wallis, R.; et al.; "Rationale for targeting complement in COVID‐19". EMBO Mol. Med., 12(8): 1–15, 2020.

Yin, S.; Huang, M.; Li, D.; Tang, N.; "Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2". J. Thromb. Thrombolysis, 51(4): 1107–10, 2021.

Bhagat, S.; Biswas, I.; Ahmed, R.; Khan, G.A.; "Hypoxia induced up-regulation of tissue factor is mediated through extracellular RNA activated Toll-like receptor 3-activated protein 1 signalling". Blood Cells Mol. Dis., 84: 1–24, 2020.

Connors, J.M.; Levy, J.H.; "COVID-19 and its implications for thrombosis and anticoagulation". Blood, 135(23): 2033–40, 2020.

Escher, R.; Breakey, N.; Lämmle, B.; "Severe COVID-19 infection associated with endothelial activation". Thromb. Res., 190: 62, 2020.

Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; et al.; "Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study". Lancet, 395(10223): 507–13, 2020.

Qu, R.; Ling, Y.; Zhang, Y.H.Z.; Wei, L.Y.; Chen, X.; Li, X.M.; et al.; "Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19". J. Med. Virol., 92(9): 1533–41, 2020.

Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; et al.; "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". Lancet, 395(10229): 1054–62, 2020.

Tal, S.; Spectre, G.; Kornowski, R.; Perl, L.; "Venous Thromboembolism Complicated with COVID-19: What Do We Know so Far?". Acta Haematol., 143(5): 417–24, 2020.

Al-Ani, F.; Chehade, S.; Lazo-Langner, A.; "Thrombosis risk associated with COVID-19 infection. A scoping review". Thromb. Res., 192: 152–60, 2020.

Fadlyana, E.; Rusmil, K.; Tarigan, R.; Rahmadi, A.R.; Prodjosoewojo, S.; Sofiatin, Y.; et al.; "A phase III, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: An interim analysis in Indonesia". Vaccine, 39(44): 6520–8, 2021.

Liu, B.; Han, J.; Cheng, X.; Yu, L.; Zhang, L.; Wang, W.; et al.; "Reduced numbers of T cells and B cells correlates with persistent SARS-CoV-2 presence in non-severe COVID-19 patients". Sci. Rep., 10(1): 1–9, 2020.

Hoque, A.; Rahman, M.M.; Imam, H.; Nahar, N.; Chowdhury, F.U.H.; "Third dose vaccine With BNT162b2 and its response on Long COVID after Breakthrough infections". medRxiv, 2021.11.08.21266037, 2021.

Ewees, M.G.; Messiha, B.A.S.; Abo-Saif, A.A.; Bayoumi, A.M.A.; Abdel-Bakky, M.S.; "Interference with coagulation cascade as a novel approach to counteract cisplatin-induced acute tubular necrosis; An experimental study in rats". Front. Pharmacol., 11(9): 1155, 2018.

Mahmoud, N.I.; Messiha, B.A.S.; Salehc, I.G.; Abo-Saif, A.A.; Abdel-Bakky, M.S.; "Interruption of platelets and thrombin function as a new approach against liver fibrosis induced experimentally in rats". Life Sci., 231: 116522, 2019.

Abdel-Bakky, M.S.; Helal, G.K.; El-Sayed, E.M.; Alhowail, A.H.; Mansour, A.M.; Alharbi, K.S.; et al.; "Silencing of tissue factor by antisense deoxyoligonucleotide mitigates thioacetamide-induced liver injury". Naunyn Schmiedebergs Arch Pharmacol., 393(10): 1887–98, 2020.

Plantone, D.; Inglese, M.; Salvetti, M.; Koudriavtseva, T.; "Corrigendum: A Perspective of Coagulation Dysfunction in Multiple Sclerosis and in Experimental Allergic Encephalomyelitis". Front. Neurol., 10: 1–12, 2019.

Hisada, Y.; Mackman, N.; "Tissue factor and cancer: Regulation, tumor growth, and metastasis". Semin Thromb Hemost., 45(4): 385–95, 2019.

Davalos, D.; Mahajan, K.R.; Trapp, B.D.; "Brain fibrinogen deposition plays a key role in MS pathophysiology – Yes". Multiple Sclerosis Journal, 25(11): 1434–5, 2019.

Levi, M.; "Clinical characteristics of disseminated intravascular coagulation in patients with solid and hematological cancers". Thromb Res., 164(S77): 81, 2018.

Lorenzano, S.; Inglese, M.; Koudriavtseva, T.; "Editorial: Role of coagulation pathways in neurological diseases". Front Neurol., 10:1–3, 2019.

Abdellatif, A.A.H.; Alsowinea, A.F.; "Approved and marketed nanoparticles for disease targeting and applications in COVID-19". Nanotechnol Rev., 10(1): 1941–77, 2021.

Abdellatif, A.A.H.; Mohammed, H.A.; Khan, R.A.; Singh, V.; Bouazzaoui A.; Yusuf M., et al.; "Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity". Nanotechnol Rev., 10(1): 1493–559, 2021.

Wool, G.D.; Miller, J.L.; "The Impact of COVID-19 Disease on Platelets and Coagulation". Pathobiology, 88(1): 15–27, 2021.

Tang, N.; Li, D.; Wang, X.; Sun, Z.; "Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia". J. Thromb. Haemost., 18(4): 844–7, 2020.

Zhou, X.; Cheng, Z.; Luo, L.; Zhu, Y.; Lin, W.; Ming, Z., et al.; "Incidence and impact of disseminated intravascular coagulation in COVID-19 a systematic review and meta-analysis". Thromb Res., 201: 23–9, 2021.

Giannis, D.; Ziogas, I.A.; Gianni, P.; "Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past". Journal of Clinical Virology, 127: 1–4, 2020.

Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; et al.; "Clinical Characteristics of Coronavirus Disease 2019 in China". New England Journal of Medicine, 382(18): 1708–20, 2020.

Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H.; "Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis". Journal of Pathology, 203(2): 631–7, 2004.

Wise, J.; "Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots". BMJ, 372(n699): 2021.

Rzymski, P.; Perek, B.; Flisiak, R.; "Thrombotic Thrombocytopenia after COVID-19 Vaccination: In Search of the Underlying Mechanism". Vaccines (Basel), 9(6): 1–12, 2021.

Scully, M.; Singh, D.; Lown, R.; Poles, A.; Solomon, T.; Levi, M.; et al.; "Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination". N Engl J Med, 384(23): 2202–11, 2021.

Soltani, H.A.; Javanmardi, K.; "Possible Risk of Thrombotic Events following Oxford-AstraZeneca COVID-19 Vaccination in Women Receiving Estrogen". Biomed Res Int, 1(2023): 1–4, 2021.

Cines, D.B.; Bussel, J.B.; "SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia". N Engl J Med, 384(23): 2254–6, 2021.

Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S.; "Thrombotic Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination". N. Engl. J. Med., 384(22): 2092–101, 2021.

Downloads

Published

2024-09-16

How to Cite

(1)
Coagulation Process Followed SARS-Cov2 Infection and Vaccination. ANJS 2024, 27 (3), 43-49.