Effects of External Magnetic Field on Focusing and Energy Distribution of Primary Electrons in an Ion Source
DOI:
https://doi.org/10.22401/xpha9056Keywords:
Plasma ion source, Magnetic flux confinement, Larmor radius, SIMIONAbstract
The effect of the applied voltage and magnetic field on the defining slot in focusing and energy distribution of the primary filament electron beam was studied theoretically. In this work, SIMION 8.1 software was used to determine the best operational conditions for focusing and the distribution of the electron beam in the ion source system. Furthermore, the Larmor radius on the slot was calculated in two dimensions for different values of magnetic flux density. The results showed that the values of flux density and slot voltage play an effective role in improving the dimensions of beam spot and energy distribution in the source. The dimensions of beam spot were reduced by about 71% at voltage value of slot 75 volt and flux density 780 G. In addition; the kinetic energy distribution for electrons were computed at different magnetic flux and obtaining a homogeneous beam energy. The results of this research support the calculations of plasma source designers.
References
Faircloth, D.; Lawrie S.; "An overview of negative hydrogen ion sources for accelerators". New J. Phys., 20: 025007, 2018.
Yuqian, C.; Chundong, H.; Yahong, X.; "Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector". Plasma Sci. Technol., 18: 453-456, 2016.
Li, J.B.; Li, L. X.; Bhaskar, B.S.; Toivanen, V. ; Tarvainen, O.; Hitz, D.; Li, L.B.; Lu, W.; Koivisto, H.; Thuillier, T.; "Effects of magnetic configuration on hot electrons in a minimum-B ECR plasma". Plasma Phys. Control. Fusion, 62: 095015, 2020.
Yahya, K.A.; "Effects of a cathode fall region on deposition rate of copper atoms in Dc plasma sputtering source". Phys. Scr. 96: 025604, 2021.
Piel, A.; "Plasma Physics an Introduction to Laboratory, Space, and Fusion Plasmas". Springer-Verlag: Berlin Heidelberg, 2010.
Donkov, N.; Dinkov, Z.; Ivanov, K.; "Ion source with hot filament and magnetic field. Model-based anode current control". Vacuum, 69: 445-447, 2002.
Gongpan, L.; Zengpu, L.; Tianli, P.; Chaoju, W.; "Some experimental studies of the calutron ion source". Nucl. Instr. Meth., 186: 353-356, 1981.
Alton, G.D.; "Ion sources for accelerators in materials research". Nucl. Instr. Meth. Phys. Res., B(73): 221-288, 1993.
Teranishi, N.; Fuse, G.; Sugitani, M.; "A review of ion implantation technology for image sensors". Sensors, 18: 2358, 2018.
Vintizenko, L.G.; Grigoriev, S.V.; Koval, N.N.; Tolkachev, V.S.; Lopatin, I.V.; Schanin, P.M.; "Hollow-cathode low-pressure arc discharges and their application in plasma generators and charged-particle sources". Russian Phys. J., 44: 927-936, 2001.
Abd-Alwahed, E.A.; Yahya, K.A.; "Effect of Cathode Electrode Shape on The Paschen Curve and Secondary Electron Coefficient". AIP Conf. Proc., 2457, 050004, 2023.
Sandonato, G.M.; Lima, P.E.; Maciel, H.S.; Otani, C.; "The influences of the magnetic field strength on the magnetic confinement of primary electrons in an ion source". Contrib. Plasma Phys., 39: 187-195, 1999.
Cao, J.; Ren, X.; Zeng, Z.; Wang, G.; "The influence of magnetic field on the ion beam current of calutron ion source". AIP Conf. Proc., 2011, 030001, 2018.
Winklehner, D.; Conrad, J.M.; Smolsky, J.; Waites L.H.; "High-current H+2 beams from a filament-driven multicusp ion source". Rev. Sci. Instr., 92: 123301, 2021.
Bakeev, I.Y.; Zenin, A.A.; Klimov, A.S.; Oks, E.M.; "Effect of a Longitudinal Magnetic Field on the Emission Characteristics of a Forevacuum Plasma Electron Source Based on Hollow Cathode Discharge". Plasma Phys. Rep., 48: 178-182, 2022.
Zhang, W.; Tierens, W.; Bobkov, V.; Cathey, A.; Cziegler, I.; Griener, M.; Hoelzl, M.; Kardaun, O.; "Interaction between filaments and ICRF in the plasma edge". Nucl. Mater Energy, 26: 100941, 2021.
Yahya, K.A.; Hussein, O.A.; "Effective parameter in extraction of ion-beam from a diode system". Optik, 176: 221–227, 2019.
Wolf, B.; "Handbook of ion sources"; CRC Press, Taylor & Francis Group Boca Raton: London, New York, 1995.
Sharma, S.K.; Vattilli, P.; Choksi, B.; Punyapu B.; Sidibomma. R.; Bonagiri, S.; Aggrawal, D.; Baruah, U.K.; "Design of a Prototype Positive Ion Source with Slit Aperture Type Extraction System". IOP Conf. Series: J. Phys.: Conf. Series, 823, 012025, 2017.
Wiedemann, H.; "Particle Accelerator Physics". 3rd ed.; Springer-Verlag: Berlin Heidelberg, 2007.
Yahya, K.A.; Rasheed, B.F.; "Effects of Discharge Current and Target Thickness in Dc-Magnetron Sputtering on Grain Size of Copper Deposited Samples". Baghdad Sci. J., 16: 84-87, 2019.
Katz, D.M.; "Physics for Scientists and Engineers: Foundations and Connections, Extended Version with Modern Physics". 1st ed.; Cengage Learning: Boston, MA 02210 USA, 2016.
Ladino, L.A.; Rondón, S.H.; Orduz, P.; "Motion of a charged particle in a constant and uniform electromagnetic field". Phys. Educ. 50: 165-169, 2015.
Boulos, M.I.; Fauchais, P.L.; Pfender, E.; "Handbook of Thermal Plasmas".; Springer Nature, Switzerland AG, 2023.
Somacal, H.; Huck, H.; Di, Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; "Simulations of electron trajectories under the influence of an array of permanent magnets in a compact ion source". Nucl. Instr. Meth. Phys. Res., A490: 9-15, 2002.
Dougar-Jabon, V.D.; Vivas Mejia F.A.; Umnov, A.M.; "Plasma confinement in an electron cyclotron double cusp trap". Phys. Scr., 62: 183-185, 2000.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Khalid A. Yahya, Oday A. Hussein
This work is licensed under a Creative Commons Attribution 4.0 International License.