Synthesis, Characterization and Antioxidant Evaluation of New N-Α-Chloroacetylsalicyloyl-N-Antipyrine Benzamide
DOI:
https://doi.org/10.22401/b72ypg13Keywords:
Benzamide , 4-Aminoantipyrine , Acetylsalicylic Acid, AntioxidantAbstract
The new compound N-α-chloroacetylsalicyloyl-N-antipyrine benzamide was synthesized by a reaction of N-benzylidene antipyrine amine and O-acetyl salicyloyl chloride. On the other hand, N-benzylidene antipyrine amine was obtained by a coupling reaction between benzaldehyde and 4-aminoantipyrine, while O-acetyl salicyloyl chloride resulted from acylation reaction of aspirin starting from salicylic acid. All synthesized compounds were characterized by using m.ps., UV-Vis., FTIR, MS, and 1HNMR spectroscopic methods. The method of DPPH was also used as testing to measure the radical scavenging of the new compound. It showed very powerful antioxidant activity with IC50 value of 29 ppm. Moreover, its antibacterial activity was tested against three types of bacteria.
References
Costanzo, L.S.; “Physiology”. 6th ed.; Wolters Kluwer Health: Philadelphia, USA, 2016. ISBN: 978-1-4511-8795-3
Steinberg, M.I.; Lacefield, W.B.; Robertson, D.W.; “Class I and III antiarrhythmic drugs”. Ann. Rep. Med. Chem., 21: 95-108, 1986. DOI: 10.1016/S0065-7743(08)61120-3
Asif, M.; “Pharmacological potential of benzamide analogues and their uses in medicinal chemistry”. Mod. Chem. Appl., 4(4): 1000194, 1-10, 2016. DOI: 10.4172/2329-6798. 1000194
Barrett, K.T.; Miller, S.J.; “Enantioselective synthesis of atropisomeric benzamides through peptide-catalyzed bromination”. J. Am. Chem. Soc., 135(8): 2963-2966, 2013. DOI: 10.1021/ ja400082x
Barrett, K.T.; Miller, S.J.; “Regioselective derivatizations of a tribrominated atrop isomeric benzamide scaffold”. Org. Lett., 17(3): 580-583, 2015. DOI: 10.1021/ol503593y
Marechal, M.D.; Carato, P.; Larchanche, P.E.; Ravez, S.; Boulahjar, R.; Barczyk, A.; Oxombre, B.; Vermersch, P.; Melnyk, P.; “Synthesis and pharmacological evaluation of benzamide derivatives as potent and selective sigma-1 protein ligands”. Eur. J. Med. Chem., 138: 964-978, 2017.
DOI: 10.1016/j.ejmech.2017.07.014
Al–Douh, M.H.; “Synthesis and Characterization of Some Barbituric Acid Derivatives via Schiff Bases”. M.Sc. Thesis. University of Babylon, Babylon, Iraq, 2002.
Al–Douh, M.H.; Al–Fatlawy, A.A.; Abid, O.H.; “Synthesis and characterization of some 2-(N-benzoyl-N-pyrid-4-yl aminobenzyl)-amino barbituric acids via Schiff's bases”. Hadh. Studies Res., 4(2): 37-49, 2003.
Al–Douh, M.H.; Al–Fatlawy, A.A.; Abid O.H.; “Synthesis and characterization of some 2-(N-benzoyl-N-pyrid-3-yl aminobenzyl)-amino barbituric acids via N-benzylidene pyridine-3-amines”. Fac. Sci. Bull., 16(10): 83-94, 2003.
Al–Douh, M.H.; Al–Fatlawy, A.A.; Abid, O.H.; “Synthesis and characterization of some 2-(N-benzoyl-N-pyrid-2-yl aminobenzyl)-amino barbituric acids via N-benzylidene pyridine-2-amines”. Univ. Aden J. Nat. Appl. Sci., 8(1): 181-194, 2004.
American Chemical Society Reagent Chemicals “4-Aminoantipyrine (Ampyrone)”. Am. Chem. Soc., 4: 1-2, 2017. DOI: 10.1021/ acsreagents.4013
European Molecular Biology Laboratory “4-Aminoantipyrine”. Chem. Entities Biol. Inter., ChEBI: 59026, 2018.
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:59026.
Dhanaraj, C.J.; Raj, S.S.S.; “Synthesis, characterization and biological studies of Schiff base metal complexes derived from 4-amino antipyrine, acetamide and p-phenylene diamine”. Inorg. Chem. Comm., 119: 108087, 2020. DOI: 10.1016/j.inoche.2020.108087
Whalen, K.; “Lippincott's Illustrated Review Pharmacology”. Wolters Kluwer: Pvt. Ltd., New Delhi, India, 2019. ISBN: 978-93-88313-20-9
Al-Labban, H.M.Y.; Sadiq, H.M.; Aljanaby, A.A.J.; “Synthesis, characterization and study biological activity of some Schiff bases derivatives from 4-amino antipyrine as a starting material”. J. Phys.: Conf. Ser., 1294: 052007, 2019. DOI: 10.1088/1742-6596/1294/5/052 007
Wilcox, J.C.F.; “Experimental Organic Chemistry”. Theory and Practice: Macmillan Publishing Company, New York, USA, 1984. ISBN: 0024276006
Mohrig, J.R.; Hammond, C.N.; Schatz, P.F.; “Techniques in Organic Chemistry”. 3rd Ed., WH. Freeman and Company: New York, USA, 2010. ISBN: 9781429219563
Maher, F.; “Kinetic study for the effect of new inhibitors on the activity of purified GPT from blood of cardiovascular patients”. Karbala Intern. J. Modern Sci., 5(2): 4, 2019. DOI: 10.33640/2405-609X.1011
Nariya, P.; Bhalodia, N.; Shukla, V.; Acharya, R.; Nariya, M.; “In vitro evaluation of antioxidant activity of Cordia dichotoma (Forst f.) bark”. AYU, 34(1): 124-128, 2013. DOI: 10. 4103/0974-8520.115451
Al-Majedy, Y.K.; Ibraheem, H.H.; Jassim, L.S.; Al-Amiery, A.A.; “Antioxidant activity of coumarine compounds”. ANJS, 22(1): 1-8, 2019. DOI: 0.22401/ANJS.22.1.01
Al-Majedy, Y.K.; Mahdi, A.; “Synthesis of phenyl-1,3,4-thiadiazol-2-amine derivatives with in vitro antioxidant activity”. ANJS, 23(2): 33-38, 2020.
DOI: 10.22401/ANJS.23.2.05
Mukherjee, S.; Pawar, N.; Kulkarni, O.; Nagarkar, B.; Thopte, S.; Bhujbal, A.; Pawar, P.; “Evaluation of free-radical quenching properties of standard ayurvedic formulation Vayasthapana rasayana”. BMC Complementary and Alternative Med., 11(38): 2-6, 2011. DOI: 10.1186/1472-6882-11-38
Yas, N.T.; Muslim, R.F.; Awad, M.A.; “Synthesis and characterization of novel Hg(II) complexes with new Schiff bases”. Materials Today: Proceedings, 45: 5544-5550, 2021. DOI: 10.1016/j.matpr.2021.02.302
Molyneux, P.; “The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity”. Songklanakarin J. Sci. and Tech., 26(2): 211-219, 2004.
Kumari, P.K.; Umakanth, A.V.; Narsaiah, T.B.; Uma, A.; “Exploring anthocyanins, antioxidant capacity and glucosidase inhibition in bran and flour extracts of selected Sorghum genotypes”. Food Biosci., 41: 100979, 2021. DOI: 10.1016/j.fbio.2021.100979
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Elham Abdalrahem Bin Selim, Mohammed Hadi Al–Douh, Faten Abdulaziz Bin Hawiel
This work is licensed under a Creative Commons Attribution 4.0 International License.