Discrete Wavelet Transform-Based Image Processing: A Review
Keywords:
Discrete wavelet transforms, Image compression, Image de-noising, Image enhancement, Image watermarkingAbstract
The field of image processing has seen remarkable advancements over the past few decades, and Discrete Wavelet Transform (DWT) has emerged as a powerful tool within this domain. This review article provides a comprehensive overview of previously published works that focus on DWT’s application in image processing. DWT offers multi-resolution analysis capabilities, making it particularly useful for various image processing tasks such as de-noising, compression, enhancement, and feature extraction. This review explores the fundamental principles of DWT and its mathematical foundations. We delve into its advantages over traditional Fourier Transform methods, particularly its ability to handle non-stationary signals and provide both frequency and spatial information simultaneously. The article surveys the application of DWT in different image processing techniques. It discusses how DWT contributes to the efficiency and effectiveness of image compression algorithms, such as the JPEG 2000 standard, and its role in reducing noise while preserving important image features.
References
Grant, A.D.; Upton, T.J.; Terry, J.R.; Smarr, B.L.; Zavala, E.; “Analysis of wearable time series data in endocrine and metabolic research”.Curr. Opin. Endocr. Metab. Res., 25, 100380, 2022.
Li, B.; Chen, X.; “Wavelet-based numerical analysis: A review and classification”. Finite Elem. Anal. Des., 81:14–31, 2014.
Dahmen, W.; “Wavelet methods for PDEs — some recent developments”. J. Comput. Appl. Math., 128(1), 133–185, 2001.
Canuto, C.; Tabacco, A.; Urban, K.; “The Wavelet Element Method Part II. Realization and Additional Features in 2D and 3D”. Appl. Comput. Harmon. Anal., 8(2):123–165, 2000.
Chui, C. K.; “An Intruduction to Wavelets”. 2nd ed.; Academic Press: Texas, America,(61-92), 1992.
Grossmann, A.; Morlet, J.; “Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape”. SIAM J. Math. Anal., 15(4), 723–736, 1984.
Brifcani, A.M.A.; Al-Bamerny, J.N.; “Image compression analysis using multistage vector quantization based on discrete wavelet transform”. International Conference on Methods and Models in Computer Science (ICM2CS-2010), India, 2012.
Zhang, D.; “Wavelet Transform”. Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval, Cham: Springer International Publishing, 3(21): 35–44, 2019.
Kumar, R.; Saini, B.S.; “Improved Image Denoising Technique Using Neighboring Wavelet Coefficients of Optimal Wavelet with Adaptive Thresholding”. Int. J. Comput. Theory Eng., 4(3): 395–400, 2012.
Vyas A.; Paik, J.; “Review of the Application of Wavelet Theory to Image Processing”. IEIE Trans. Smart Process. Comput., 5(6), 403–417, 2016.
Lala, H.; “Digital Image Watermarking using Discrete Wavelet Transform”. Int. Res. J. Eng. Technol., 4(1): 1682–1685, 2017.
Zeebaree, D.Q.; Haron, H.; Abdulazeez, A.M.; Zebari, D.A.; “Machine learning and Region Growing for Breast Cancer Segmentation”. International Conference on Advanced Science and Engineering (ICOASE-2019), 88–93, 2-4 April, Duhok, Iraq, 2019.
Alickovic, E.; Kevric, J.; Subasi, A.; “Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction”. Biomed. Signal Process. Control, 39, 94–102, 2018.
Reichardt, K.; Timm, L.C.; “Spatial and Temporal Variability of SPAS Attributes: Analysis of Spatial and Temporal Series”. Soil, Plant and Atmosphere: Concepts, Processes and Applications, Cham: Springer International Publishing, 367–422, 2020.
Zamani, M. ; Musirin, I.; Hassan, H.; Shaaya, S. A.; Sulaiman, S. A.; Md. Ghani, N; Suliman, S. A.; “Active and reactive power scheduling optimization using firefly algorithm to improve voltage stability under load demand variation”. Indones. J. Electr. Eng. Comput. Sci., 9(2), 365–372, 2018.
Kwon, H.; Choi, Y.; Park , H.; Oh Hyungtae, K.C; Moon, I, Kim, J; “Distillation Column Temperature Prediction Based on Machine-Learning Model Using Wavelet Transform”. Computer Aided Chemical Engineering, 49:1651–1656, 2022.
Singh, P.; “Wavelet Transform in Image Processing : Denoising, Segmentation and Compression of Digital Images”. Ijsrset, 2(2), 1137–1140, 2016.
Usevitch, B.E.; “A tutorial on modern lossy wavelet image compression: foundations of JPEG 2000”. IEEE Signal Process. Mag., 18(5): 22–35, 2001.
Kumari, S; Vijay, R.; “Analysis of Orthogonal and Biorthogonal Wavelet Filters for Image Compression”. Int. J. Comput. Appl., 21(5): 17–19, 2011.
Canditiis, D.D.; Pensky, M.; Wolfe, P.J.; “Denoising strategies for general finite frames”. Math. Comput. Simul., 147: 90–99, 2018.
Norilo, V.; “Kronos: A Declarative Metaprogramming Language for Digital Signal Processing”. Comput. Music J., 39(4): 30–48, 2015, http://www.jstor.org/stable/43829290.
Shaker, A. N.; “Comparison between Orthogonal and Bi-Orthogonal Wavelets”. J. Southwest Jiaotong Univ., 55(2), 2020.
Ateş, A.E.; Ateş, S.; “Overview of Hydrogen Production by Electrochemical Method ; Advantages and Disadvantages”. Journal of Industrial and Engineering Chemistry, [947], 801–806, 2023.
Sharma, M.; Achuth, A. P.; Pachori, R. B.; Gadre, V. M.; “A parametrization technique to design joint time–frequency optimized discrete-time biorthogonal wavelet bases”. Signal Processing, 135:107–120, 2017.
Choi, H.; Jeong, J.; “Speckle noise reduction technique for sar images using statistical characteristics of speckle noise and discrete wavelet transform”. Remote Sensing, 11(10), 2019.
Nisha, S.S.; Raja, S.P.; “Multiscale transform and shrinkage thresholding techniques for medical image denoising - Performance evaluation”. Cybern. Inf. Technol., 20(3): 130–146, 2020.
Shihab, H.S. ; “Image Compression Techniques on-Board Small Satellites”. Iraqi J. Sci., 64(3): 1518–1534, 2023.
Barina, D.; Klima, O.; “JPEG 2000: guide for digital libraries”. Digit. Libr. Perspect., 36(3): 249–263, 2020.
Tsai, R.; “the Impact of Technology on Modern Farming Practices”. Int. J. Early Child. Spec. Educ., 6( 5): 50–51, 2023.
Kamalin,C. J.; MuthuLakshmi, G.; “A Hybrid BTC Based Compression Techniques of General Images”.Int. J. Membr. Sci. Technol.,10(5):878–885, 2023.
Donoho, D. L.; Johnstone, I. M.; “Threshold selection for wavelet shrinkage of noisy data”. Proc. 16th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 1: IEEE: Baltimore, USA, A24-A25 1994, https://api.semanticscholar.org/CorpusID:121025682.
Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E. P.; “Image denoising using scale mixtures of Gaussians in the wavelet domain”. IEEE Trans. Image Process., 12(11):1338–1351, 2003.
Mallat, S.; Zhong, S.; “Characterization of signals from multiscale edges”. IEEE Trans. Pattern Anal. Mach. Intell., 14(7): 710–732, 1992.
Ma, W.Y.; Manjunath, B.S.; “Texture features and learning similarity”. Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE: San Francisco, USA, 425–430,1996.
Sharma, A.; Singh, A.K.; Ghrera, S.P.; “Secure Hybrid Robust Watermarking Technique for Medical Images”. Procedia Comput. Sci., 70: 778–784, 2015.
Boye, E.S.; “Determinants of Academic Performance of Armed Forces Schools : Perceptions of Teachers of Ghana Armed Forces Basic Schools”.,1: 0–25, 2024.
Kuo, C.F.; Barman, J.; Huang, C.C.; “Complete, fully-automatic extraction, classification and image registration of repeating printed fabric patterns and their derivatives”. Expert Syst. Appl., 213: 119286, 2023.
Jiotsa, B.; Naccache, B.; Duval, M.; Rocher, B.; Grall-Bronnec, M.; “Social media use and body image disorders: Association between frequency of comparing one’s own physical appearance to that of people being followed on social media and body dissatisfaction and drive for thinness”. Int. J. Environ. Res. Public Health, 18(6):1–14, 2021.
Boudiaf, A; Boubendira, K.; Harrar, K.; Saadoune, A.; Ghodbane, H.; Dahane, A.; Messai, O.; “Image compression of surface defects of the hot-rolled steel strip using Principal Component Analysis”. Mater. Tech., 107(2), 2019.
Khashman, A.; Dimililer, K.; “Image compression using neural networks and Haar wavelet”. WSEAS Trans. Signal Process., 4(5) :330–339, 2008.
Elamaran, V.; Praveen, A.; “Comparison of DCT and wavelets in image coding”. 2012 International Conference on Computer Communication and Informatics, IEEE: Coimbatore, India, 10-12 Jan, 2012.
Taujuddin, N. S. A. M.; Ibrahim, R.; Sari, S.; Lashari, S. A.; “Consolidating literature for images compression and its techniques”. J. Telecommun. Electron. Comput. Eng., 10(1): 35–39, 2018.
Seetharaman, K.; “Applications of Image Compression on Agricultural Image Data Analysis”. 2nd ed. 208–241, 2019.
Hacihaliloglu, I.; Kartal, M.; “DCT and DWT based image compression in remote sensing images”. AP-S Int. Symp. 4: 3856–3858, 2004.
Sahnoun, K.; Benabadji, N.; “Satellite image compression algorithm based on the FFT”. Int. J. Multimed. and its Appl. 6, 2021.
Memane, T.; Ruikar, S. D.; “Selection of wavelet for satellite image compression using picture quality measures”. International Conference on Communication and Signal Processing 2104 , Melmaruvathur, India, 1003–1006, 2014.
Susilo, R.M.; Bretschneider, T.R.; “On the realtime satellite image compression of X-Sat”. Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, IEEE: Singapore, (1): 474-478, 2003.
Raghavendra, C.; Sivasubramanian, S.; Kumaravel, A.; “RETRACTED ARTICLE: Improved image compression using effective lossless compression technique”. Cluster Comput., 22(2): 3911–3916, 2019.
Bnou, K.; Raghay, S.; Hakim, A.; “A wavelet denoising approach based on unsupervised learning model”. EURASIP J. Adv. Signal Process., 1, 2020.
Yoon B. J.; Vaidyanathan, P. P.; “Wavelet-based denoising by customized thresholding”. ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process.IEEE: Montreal, QC, Canada, 2, 2004.
Gilman, A.; Bailey, D.; Marsland, S.; “Least-squares Optimal Interpolation for Fast Image Super-resolution”. 2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications, , IEEE: Ho Chi Minh, Vietnam, 29–34. 2010.
Mutlag A.A.; Abd Ghani, M.K.; Abed Mohammed, M., et al., “MAFC: Multi-agent fog computing model for healthcare critical tasks management”. Sensors 20(7), 1853, 2020.
Fracastoro, G.; Thanou, D.; Frossard, P.; “Graph Transform Optimization with Application to Image Compression”. IEEE Trans. Image Process., 29: 419–432, 2020.
Gupta, M.; Garg, A.K.; “Analysis Of Image Compression Algorithm Using DCT”. International Journal of Engineering Research and Applications (IJERA), 2(1):515-521, 2012.
Dolly, B.; Raj, D.; “Various Methods of Enhancement in Colored Images A Review”. Int. J. Comput. Sci. Eng., 6(7):1453–1459, 2018.
Latha, B..; Manjula, B. K.; Sumana, C. H.; “Multi modal hybrid image fusion using discrete wavelet and contourlet transform”. Int. J. Innov. Technol. Explor. Eng., 8(10):2206–2210, 2019.
Lee, T.H.H.; “Wavelet Analysis for Image Processing”. 2008. [Online]. Available: https://api.semanticscholar.org/CorpusID:14109726
Quazi, R.; “Hybrid Technique for Image Enhancement,” Int. Res. J. Eng. Technol., 4(7):819–822, 2017, [Online]. Available: https://irjet.net/archives/V4/i7/IRJET-V4I7145.pdf
Hanspal R.K.; Sahoo, K. ; “A Survey of Image Enhancement Techniques,” Int. J. Sci. Res., 6(5): 2319–7064, 2015.
Golilarz, N.A.; Gao, H.; Ali, W.; Shahid, M.; “Hyper-Spectral Remote Sensing Image De-Noising with Three Dimensional Wavelet Transform Utilizing Smooth Nonlinear Soft Thresholding Function,” 2018 15th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process. ICCWAMTIP 2018, IEEE: Chengdu, China , 142–146, 2018.
Abdulazeez, A.M.; Zeebaree, D.Q.; Zebari, D.A.; Zebari, G. M.; Adeen, I. M. N.; “The Applications of Discrete Wavelet Transform in Image Processing: A Review”. J. Soft Comput. Data Min., 1(2):31–43, 2020.
Madhankumar, G.; Tarun, K.; Kumar, G.G.; “Image Compression Using Discrete Wavelet Transform in Simulink”. Int. J. Comput. Sci. Mob. Comput., 11(1): 122–129, 2022.
Urooj, S.; Singh, S.P.; “Wavelet transform-based soft computational techniques and applications in medical imaging”. Biometrics Concepts, Methodol. Tools, India, 969–993, 2016.
Stromvig, D.; Ren, D.; “Fingerprint Image Compression using Biorthogonal and Orthogonal Wavelets at Different Levels of Discrete Wavelet Transform”. J. Inf. Eng. Appl., 14(2): 23–35, 2024.
Rong, Z.; Li, Z.; Dong-nan, L.; “Study of color heritage image enhancement algorithms based on histogram equalization,” Optik (Stuttg)., 126(24): 5665–5667, 2015.
Abdulkareem K.H.; Mohammed, M.; Gunasekaranet, S.S.; “A review of fog computing and machine learning: Concepts, applications, challenges, and open issues”. IEEE Access, 7: 153123–153140 2022.
Hamid, I.I.; Jamel, E.M.; “Image Watermarking using Integer Wavelet Transform and Discrete Cosine Transform”. J. Sci., 57(2):1308–1315, 2016.
Jabade, V.S.; Gengaje, S.R.; “Logo based Image Copyright Protection using Discrete Wavelet Transform and Fuzzy Inference System”. Int. J. Comput. Appl., 58(10): 22–28, 2012.
Jie, Y.; Pei, J.Y.; Jun, L.; Yun, G.; Wei, X.; “Smart Home System Based on IOT Technologies”. 2013 International Conference on Computational and Information Sciences, IEEE: Shiyang, China , 1789–1791, 2013.
Kaibou, R.; Azzaz, M.S.; Krimil, M.A.; Benssalh, M.; “Comparative Study of Chaos-Based Robust Digital Image Watermarking Techniques”. International Conference on Advanced Electrical Engineering (ICAEE), IEEE: Algiers, Algeria, 1–6, 2019.
Ghaedi, A.; Sedaghati, R.; Mahmoudian, M.; Bazyari, S.; “De-Noising of Partial Discharge Signals in HV XLPE Cables by Reference Noise based on the Wavelet Transform”. International Journal of Industrial Electronics, Control and Optimization ,6(4): 291-306,2023.
Venkateswarlu, L.; “A Robust Dual Watermarking Technique for Medical Images in EHealthcare Records”. Helix, 8(2): 3206–3214, 2018.
Tuncer, T.; Kaya, M.; “A novel image watermarking method based on center symmetric local binary pattern with minimum distortion,” Optik (Stuttg)., vol. 185, pp. 972–984, 2019.
Kumar, S.; Indora, S.; Tech, M.; “Digital Image Watermarking Based on Wavelet Techniques: A Review”. 2016.
Yu, H.; Inoue, K.; Hara, K.; Urahama, K.; “Saturation improvement in hue-preserving color image enhancement without gamut problem”. ICT Express, 4(3):134–137, 2018.
Qiao, X.; Bao, J.; Zhang, H.; Zeng, L.; Li, D.; “Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform,” Inf. Process. Agric., 4(3):206–213, 2017.
Arfaoui, S.; Ben Mabrouk; A. ; Cattani, C.; “New Type of Gegenbauer–Hermite Monogenic Polynomials and Associated Clifford Wavelets”. J. Math. Imaging Vis., 62(1): 73–97, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Israa Hashim Latif, Sarah Haider Abdulredha, Sana Khalid Abdul Hassan
This work is licensed under a Creative Commons Attribution 4.0 International License.