Construction of Dopamine Hydrochloride Liquid Selective Electrodes

Authors

  • Rana A. Hammza Department of Chemistry, College of Science, Al-Nahrain University, Jaderia, Baghdad, Iraq

DOI:

https://doi.org/10.22401/r9eb3609

Keywords:

Dopamine , Electrochemical method , Liquid membrane , PVC membrane , Sensor

Abstract

Three liquid selective electrodes were synthesized based on particle pair to selective dopamine chloride. The construction electrodes consist of phosphomolybdic acid (dopamine), di-n-butyl phosphate, Di-n-butyl phthalate, and di-octylphenylphosphonate as plasticizers materials. The construction of preparing probes was examined potentially with successes   Nernstain response around 52.50 and 50. 50 mV/decade for electrodes on both DBPH and DOPH were as plasticizers, respectively. The most direct ranges concentrations of dopamine in drug form were found to be around 2.5×10-5-1.0×10-2 for DBPH and 4.30×10-5 -1.0×10-1 M for DOPH. The detection limits were reached to 2.31×10-6 in DBPH and 5. 63×10-6 M in DOPH electrode type. While third electrode relied on di-n-butyl phosphate (DPH), a non-Nernstain equivalent of around 19.10 mV/decade with a range of concentration about 2.2×10-5 -1.0×10-1 with a detection limit equivalent to 6.35×10-6. The pH values in the experimental application were asses to obtain the best determination of dopamine concentration at 10-3M. The optimisation of both electrodes DBPH and DOPH achieved good agreements to lifetime, selectivity, potentiometric techniques and accuracy of measurements. At the same time the standard expansion, various standard expansions and potentiometric titration result in an immediate strategy for the assurance of dopamine in drug form.

References

Anuar N.S.; Basirun W.J.; Shalauddin M.and Akhter S.; "A dopamine electrochemical sensor based on a platinum–silver graphene nanocomposite modified electrode". RSC adv., 10(29): 17336-44, 2020.

Berke Joshua D.; "What does dopamine mean?". Nat. Neurosci., 21(6): 787-793, 2018.

Shehab A. A.; Mohammed D. H. and Mahmood H. S. M.; "Spectrophotometric Determination of Loperamide Hydrochloride in Pure and Pharmaceutical Dosage Forms Using Oxidative Coupling Reaction". Egypt. J. Chem., 64(12): 7371-7376, 2021.

Guo L.J. and Zhang Y. Li Q.; "Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III)". Anal. Sci., 25(12): 1451-1455, 2009.

El-Zohry A.M. and Hashem E.Y.; "Environmental Method to Determine Dopamine and Ascorbic Acid Simultaneously via Derivative Spectrophotometry ". J. Spectrosc., 2: 260-376, 2013.

Nagranj P.; Srinivasa M.K.C.;Yathirajan H.S. and Mohan B. M.; " Rapid Spectrophotometric Determination of Dopamine Hydrochloride with Chloromine-T". Indian J. Pharm. Sci., 60 (2): 99-101, 1998.

Dı´az A.N.; Sanchez F.G.; Aguilar A.; Bracho V. and Algarra M.; "HPLC Determination of the Cardiotonics, Dopamine and 4-Methyl-2-aminopyridine, in Serum Following FluorescamineDerivatization". J. Liq. Chrom. Relat. Tech., 32: 849–859, 2009.

Abass A.M.; Alabdullah S.S. and Albassam A.Z.; "Direct Potentiometric Evaluation of Trazodone Hydrochloride by Novel Ion Selective Electrodes". Anal. Bioanal. Electrochem., 14(7):667-79,2022.

Abass A.M.; Alabdullah S.S.; Hassan O.S. and Ahmed A.; "Novel potentiometric sensors for determination of ondansetron hydrochloride in pure and dosage form". RSC adv., 11(55): 34820-34827, 2021.

Abass M.A.; "Synthesis New Liquid Selective Electrodes of Ciprofloxacin Hydrochloride for Determination Ciprofloxacin in Pure form and Pharmaceuticals Preparation". Baghdad Sci. J., 14(4), 0787, 2017.

Jackowska K. and Krysinski P.; "New trends in the electrochemical sensing of dopamine". Anal. Bioanal. Chem., 405:3753-71, 2013.

Pandikumar A.; How G.T.; See T.P.; Omar F.S.; Jayabal S.; Kamali K.Z; Yusoff N.; Jamil A.; Ramaraj R.; John S.A. and Lim H.N; "Graphene and its nanocomposite material based electrochemical sensor platform for dopamine". RSC adv., 4(108): 63296-323, 2014.

Yusoff N.; Pandikumar A.; Ramaraj R.; Lim H.N. and Huang N.M; " Gold nanoparticle based optical and electrochemical sensing of dopamine". Microchimica Acta., 182: 2091-114, 2015.

Santos N.F.; Pereira S.O.; Moreira A.; Girão A.V.; Carvalho A.F.; Fernandes A.J. and Costa F.M.; " IR and UV Laser Induced Graphene: Application as Dopamine Electrochemical Sensors". Adv. Mater. Technol., 6(6):2100007, 2021.

Song W.; Chen Y. Xu. J.; Yang X.R. and Tian D.B.; "Dopamine sensor based on molecularly imprinted electrosynthesized polymers". J. Solid State Electrochem., 14:1909-1914, 2010.

Anithaa A.C.; Lavanya N.; Asokan K. and Sekar C.; "WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid". Electrochim. Acta., 10(167): 294-302, 2015.

Agrawal N.; Zhang B.; Saha C.; Kumar C.; Kaushik B.K. and Kumar S.; "Development of dopamine sensor using silver nanoparticles and PEG-functionalized tapered optical fiber structure". IEEE Trans. Biomed. Eng., 5; 67(6):1542-7, 2019.

Kamal E.; Faten B. and Yap W.F.; "Recent advances in electrochemical and optical sensing of dopamine". Sensors, 20(4): 1039, 2020.

Alabdullah S.S.; AL-Bassam A.Z. and Asaad N.; "Electrochemical sensors and its applications ". Int. J. Res. Eng. Innov., 20:85-262, 2021.

Fuzhi Li.; Beibo Ni.; Yiru Z.; Yunxia H. and Guangli Li.; "A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite". Surf. Interfaces, 26:101375, 2021.

Downloads

Published

2024-03-15

Issue

Section

Articles

How to Cite

[1]
“Construction of Dopamine Hydrochloride Liquid Selective Electrodes”, ANJS, vol. 27, no. 1, pp. 23–28, Mar. 2024, doi: 10.22401/r9eb3609.

Most read articles by the same author(s)