An Overview of Synthesis and Applications of Chalcone Derivatives
DOI:
https://doi.org/10.22401/6jpfd424Keywords:
Chalcones , Synthesis , ApplicationsAbstract
Chalcone and its derivatives have attracted great attention because of a wide range of biological activities such as, antimicrobial, anticancer, antioxidant, anti-anthelmintic, anti-amoebicidal, antiulcer, antiviral, insecticidal and immunosuppressive. The presence of functional groups and conjugation within the structure make it a good candidate for these applications. This review highlighted the synthesis of chalcone derivatives which were described by researchers and studied their biological activity.
References
Mphahlele, M.J.; “Synthesis, Structural and Biological Properties of the Ring-A Sulfonamido Substituted Chalcones: A Review”. Molecules, 26(19): 5923, 2021.
Karthikeyan, C.; Narayana Moorthy, SH.; Ramasamy, N.; Vanam, S.; Manivannan, U.; Karunagaran, E.; et al.; “Advances in chalcones with anticancer activities”. Recent Pat. Anticancer. Drug Discov,10 (1): 97–115, 2015.
Elkanzi, N.A.A.; Hrichi, H.; Alolayan, R.A.; Derafa,W.; Zahou, F.M.; Bakr, R.B.B.; “Synthesis of chalcones derivatives and their biological activities: a review”. ACS Omega,7 (32): 27769–27786, 2022.
Okolo, E.N.; Ugwu, D.I.; Ezema, B.E.; Ndefo, J.C.; Eze, F.U.; Ezema, C.G.; et al.; “New chalcone derivatives as potential antimicrobial and antioxidant agent”. Sci. Rep.,11(1): 21781, 2021.
Rashi, H.U.; Ahmad, Y.; Xu, N.; Muhammad, Y.; Wang. L.; “Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities”. Bioorg. Chem., 87(18): 335–365, 2019.
Lakshminarayanan. B.; Kannappan, N.; Subburaju. T.; “Synthesis and biological evaluation of novel chalcones with methanesulfonyl end as potent analgesic and anti-inflammatory agents”. Int. J. Pharm. Res. Biosci., 11(10):. 4974–4981, 2020.
Choudhary, A.N.; Kumar. A.; Juyal. V.; “Design, synthesis and evaluation of chalcone derivatives as anti-inflammatory, antioxidant and antiulcer agents”. Lett. Drug Des. Discov.,9 (5): 479–488, 2012.
Bale, A.T.; Salar, U.; Khan, K.M.; Chigurupati, S.; Fasina, T.; Ali, F.; et al.; “Chalcones and bis-chalcones analogs as DPPH and ABTS radical scavengers”. Lett. Drug Des. Discov.,18(3): 249–257, 2021.
Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P.; “Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review”. Eur. J. Med. Chem., 193(20): 112215, 2020.
Padarthi, P.K.; Namasivayam, E.; “Synthesis and biological evaluation of chalcones from 2-acetyl-5-methylfuran”. Int. J. Appl. Pharm. Sci. Res., 4(7): 2629-2638, 2013.
Fu, Y.; Liu,D.; Zeng, H.; Ren, X.; Song, B.; Hu, D.; et al.; “New chalcone derivatives: synthesis, antiviral activity and mechanism of action”. RSC Adv., 10 (41): 24483–24490, 2020.
Reddy, M.R.; Aidhen, I.S.; Reddy, U.A.; Reddy, G.B.; Ingle, K.; Mukhopadhyay, S.; “Synthesis of Glucosylated Isoliquiritigenin and Analogues for Aldose Reductase Inhibition Studies”. European J. Org. Chem., 2019(24): 3937–3948, 2019.
Shah, U.; Patel, S.; Patel, M.; Gandhi, K.; Patel, A.; “Identification of chalcone derivatives as putative non-steroidal aromatase inhibitors potentially useful against breast cancer by molecular docking and ADME prediction”. Ind. J. Chem. B., 59(2): 283–293, 2020.
Aljohani, G.; Al-Sheikh, A.A.; Alraqa, S.Y.; Itri Amran, S.; Basar, N.; “Synthesis, molecular docking and biochemical analysis of aminoalkylated naphthalene-based chalcones as acetylcholinesterase inhibitors”. J. Taibah Univ. Sci., 15(1): 781–797, 2021.
Leitão, E.; “ Chalcones: retrospective synthetic approaches and mechanistic aspects of a privileged scaffold”. Curr. Pharm. Des., 26(24): 2843-2858 ,2020.
Dhaliwal, J.S.; Moshawih, S.; Goh, K.W.; Loy, M.J.; Hossain, M.S.; Hermansyah, A.; "Pharmacotherapeutics applications and chemistry of chalcone derivatives". Molecules, 27(20): 7062, 2022.
Awasthi, S.K.; Mishra, N.; Kumar, B.; Sharma, M.; Bhattacharya, A.; Mishra, L.C.; et al.; “Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro”. Med. Chem. Res., 18(1): 407–420, 2009.
Straub, T.S.; “Epoxidation of α, β-unsaturated ketones with sodium perborate”. Tetrahedron Lett., 36(5): 663–664, 1995.
Yazdan, S.K.; Sagar, G.V.; Shaik, A.B.; “Biological and synthetic potentiality of chalcones”. J. Chem. Pharm. Res., 7(11): 829–842, 2015.
Yazdan, S.K.; “Chemical and Biological Potentials of Chalcones: A Review”. Org. Med. Chem. Int. J.,1(1): 1–9, 2015.
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L.; “Potential pharmacological uses of chalcones: a patent review (from June 2011–2014)”. Expert Opin. Ther. Pat., 25(3): 351–366, 2015.
Yerragunta, V.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T.; “A review on chalcones and its importance”. Pharma. Tutor., 1(2): 54–59, 2013.
Aljamali, N.M.; Farhan, Z.M.; “Anticancer study of innovative macrocyclic formazan compounds from trimethoprim drug”. Egypt. J. Anal. Chem., 66(1); 217-230, 2023.
Aljamali, N.M.; Alfatlawi, I.O.; “Synthesis of sulfur heterocyclic compounds and study of expected biological activity”. Res. J. Pharm. Technol., 8(9): 1225–1242, 2015.
Mohammed, M.; Aljamali, N.M.; Shubber, W.A.; Abdalrahman, S.A.; “New azomethine-azo heterocyclic ligands via cyclization of ester”. Res. J. Pharm. Technol., 11(6): 2555–2560, 2018.
Zouitini, A.; Rodi, Y.K.; Elmsellem, H.; Chahdi, F.O.; Misbahi, K.; Janati, A.E.; et al.; “A novel route to 1, 4-dihydroquinoxaline for biological and electrochemical properties”. Moroccan J. Chem., 5(3): 3–5, 2017.
Nielsen, S.F.; Boesen, T.; Larsen, M.; Schonning, K.; Kromann, H.; “Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group”. Bioorg. Med. Chem., 12(11): 3047–3054, 2004.
Karthikeyan, M.S.; Holla, B.S.; Kumari, N.S.; “Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines”. Eur. J. Med. Chem., 42 (1): 30–36, 2007.
Wu, W.; Ye, H.; Wan, L.; Han, X.; Wang, G.; Hu, J.; et al.; “Millepachine, a novel chalcone, induces G 2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo”. Carcinogenesis, 34(7): 1636–1643, 2013.
Shibata, S.; Inoue, H.; Iwata, S.; Ma, R.; Yu, L.; Ueyama, H.; et al.; “Inhibitory effects of licochalcone an isolated from Glycyrrhiza inflata root on inflammatory ear edema and tumour promotion in mice”. Planta. Med., 57(3): 221–224, 1991.
Wang, Y.; Chan, F.L.; Chen, S.; Leung, K.L.; “The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase”. Life Sci., 77(1): 39–51, 2005.
Wang, Q.; Ding, Q.H.; Liu, J.K.; Zheng, Y.T.; “Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus”. Antiviral Res., 64(3): 189–194, 2004.
Nakagawa-Goto, K.; Lee, K.H.; “Anti-AIDS agents 68. The first total synthesis of a unique potent anti-HIV chalcone from genus Desmos”. Tetrahedron Lett., 47(47): 8263–8266, 2006.
Mahapatra, D.K.; Asati, V.; Bharti, S.K.; “Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives”. Eur. J. Med. Chem., 92 (1): 839–865, 2015.
Yoon, G.; Lee, W.; Kim, S.N.; Cheon, S.H.; “Inhibitory effect of chalcones and their derivatives from Glycyrrhiza inflata on protein tyrosine phosphatase 1B”. Bioorg. Med. Chem. Lett., 19(17): 5155–5157, 2009.
Na, M.; Jang, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Kim, B.Y.; et al.; “Protein tyrosine phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildbraedii”. J. Nat. Prod., 69(11): 1572–1576, 2006.
Hirai, S.; Kim, Y.I.; Goto, T.; Kang, M.S.; Yoshimura, M.; Obata, A.; et al.; “Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages”. Life Sci., 81(16): 1272–1279, 2007.
Funakoshi-Tago, M.; Okamoto, K.; Izumi, R.; Tago, K.; Yanagisawa, K.; Narukawa, Y.; et al.; “Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway”. Int. Immunopharmacol., 25(1): 189–198, 2015.
Zhao, F.; Nozawa, H.; Daikonnya, A.; Kondo, K.; Kitanaka, S.; “Inhibitors of nitric oxide production from hops (Humulus lupulus L.)”. Biol. Pharm. Bull., 26,(1): 61–65, 2003.
Russell, A.E.; Gines, B.R.; ”Chalcones: Potential Chemotherapeutic Compounds and Educational Tools for Closing the Loop in STEM”. Acc. Chem. Res., 56(11): 1256-1262, 2023.
Nagai, H.; He, J.; Tani, T.; Akao, T.; “Antispasmodic activity of licochalcone A, a species specific ingredient of Glycyrrhiza inflata roots”. J. Pharm. Pharmacol., 59(10): 1421–1426, 2007.
Narender, T.; Tanvir, K.; Rao, M.S.; Srivastava, K.; Puri, S.K.; “Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum”. Bioorg. Med. Chem. Lett., 15(10): 2453–2455, 2005.
Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; et al.; “Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents”. Eur. J. Med. Chem., 115(16): 230–244, 2016.
Hatano, T.; Takagi, M.; Ito, H.; Yoshida, T.; “Phenolic constituents of liquorice. VII. A new chalcone with a potent radical scavenging activity and accompanying phenolics from liquorice”. Chem. Pharm. Bull., 45(9): 1485–1492, 1997.
Koorbanally, N.A.; Randrianarivelojosia, M.; Mulholland, D.A.; van-Ufford, L.Q.; van den Berg, A.J.J; “Chalcones from the seed of Cedrelopsis grevei (Ptaeroxylaceae)”. Phytochemistry, 62(8): 1225–1229, 2003.
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V.; “Chalcone synthesis, properties and medicinal applications: a review”. Environ. Chem. Lett.,18(1): 433–458, 2020.
Egbujor, M.C.; Saha, S.; Buttari, B.; Profumo, E.; Saso, L.; “Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress”. Expert Rev. Clin. Pharmacol., 14(4): 465–480, 2021.
Colunga Biancatelli, R.M.L; Berrill, M.; Catravas, J.D.; Parik, P.E.; “Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19)”. Front. Immunol., 11(2): 1451, 2020.
Rozmer. Z.; Perjési, P.; “Naturally occurring chalcones and their biological activities”. Phytochem. Rev., 15(1): 87–120, 2016.
Gupta, A.; Garg, S.; Singh, H.; “Development of chalcone-based derivatives for sensing applications”. Anal. Methods, 12(42): 5022–5045, 2020.
Keillor, J.W.; Apperley, K.Y.P.; “Trans-glutaminase inhibitors: a patent review”. Expert Opin. Ther. Pat., 26(1): 49–63, 2016.
Ibrahim-Ouali, M.; Dumur, F.; “Recent advances on chalcone-based photoinitiators of polymerization”. Eur. Polym. J., 158(1): 110688, 2021.
Jeon, K.H.; Lee, E.; Jun, K.Y.; Eom, J.E.,; Kwak, S.Y.; Na, Y.; et al.; “Neuroprotective effect of synthetic chalcone derivatives as competitive dual inhibitors against μ-calpain and cathepsin B through the downregulation of tau phosphorylation and insoluble Aβ peptide formation”. Eur. J. Med. Chem., 121(1): 433–444, 2016.
Kang, L.; Gao, X.H.; Liu, H.R.; Men, X.; Wu, H.N.; Cui, P.W.; et al.; “Structure–activity relationship investigation of coumarin–chalcone hybrids with diverse side-chains as acetylcholinesterase and butyrylcholinesterase inhibitors”. Mol. Divers., 22(5): 893–906, 2018.
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L.; “Antibacterial activities of flavonoids: structure-activity relationship and mechanism”. Curr. Med. Chem., 22(1): 132–149, 2015.
Sharma,V.V.; Kumar, V.; Kumar, P.; “Heterocyclic chalcone analogues as potential anticancer agents”. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Agents), 13(3): 422–432, 2013.
Verma, S.; Srivastava, A.K.; Pandey, O.P.; “A review on chalcones synthesis and their biological activity”. Pharma.Tutor, 6(2), 22-39, 2018.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Haya Ahmed, Ahmed A. Ahmed, Ahmed Al-Ani, Jamel Jebali, Amamer M. Redwan
This work is licensed under a Creative Commons Attribution 4.0 International License.