Forensic Applications of Markers Present on the X Chromosome

Authors

  • Reem Husam Al-Tabra Forensic DNA Center for Research and Training , Al-Nahrain University, Jadriya, Baghdad, Iraq
  • Asia Abdul Lateef Mahdi Forensic DNA Research and Training Center, Al-Nahrain University, Jadriya, Baghdad, Iraq
  • Mohammed Mahdi Al–Zubaidi Department Molecular genetics and DNA fingerprinting ,Forensic DNA Research and training Center ,Al-Nahrain University , Jadriya , Baghdad, Iraq
  • Halah Khalid Ibrahim Al-Sammaraie Department Molecular genetics and DNA fingerprinting ,Forensic DNA Research and training Center ,Al-Nahrain University , Jadriya , Baghdad, Iraq
  • Asmaa A. Jawad Al-Nahrain University
  • Ban Ameen Abd el_Jabbar Forensic DNA Center for Research and Training , Al-Nahrain University, Jadriya, Baghdad, Iraq
  • Sura Nabil Hameed Forensic DNA Center for Research and Training , Al-Nahrain University, Jadriya, Baghdad, Iraq

DOI:

https://doi.org/10.22401/xywxx552

Keywords:

Forensic DNA , Kinship , STR Forensic DNA , X chromosome

Abstract

The X chromosome is one of the two sex chromosomes found in humans and other mammals. It plays a crucial role in determining an individual's sex and contains genetic information that can be useful in forensic and human identity testing. Unlike autosomal DNA, which is inherited from both parents, the X chromosome is inherited differently in males and females, making it useful in certain types of analyses. In forensic investigations, the X chromosome can be used to determine the sex of an individual, which can be useful in identifying potential suspects or victims. Additionally, X chromosome analysis can be used to link evidence samples to a particular individual or to exclude individuals as potential contributors of the evidence. This can be particularly useful in cases where the evidence sample is a mixture of DNA from multiple individuals. In human identity testing, the X chromosome can be used in situations where other types of DNA analysis are not possible or inconclusive. For example, in cases where a potential parent is unavailable for testing, analysis of the X chromosome can be used to determine if a child is likely to be their biological offspring. Similarly, in cases where traditional autosomal DNA analysis is inconclusive, X chromosome analysis can be used to provide additional information about the biological relationship between individuals. However, there are some limitations to the use of X chromosome analysis in forensic and human identity testing. One limitation is that it is not as informative as autosomal DNA analysis, as it contains less genetic information. Additionally, the inheritance patterns of the X chromosome can be complex, particularly in cases where there are multiple generations involved. Therefore, X chromosome analysis should be interpreted in conjunction with other types of DNA analysis and other forms of evidence to ensure accurate and reliable results. Overall, the use of X chromosome analysis in forensic and human identity testing can provide important information in certain situations, particularly where traditional DNA analysis is not possible or inconclusive. As such, it is an important tool in the fields of forensic science and human identification.

References

Shetty N.K.; "Inheritance of Chromosomes, Sex Determination, and the Human Genome: A New Paradigm”. Genome, 2(1): 16-26, 2018.

Balaton B.P.; Dixon-McDougall T.; Peeters, S.B.; Brown, C.J; ”The eXceptional nature of the X chromosome". Hum. Mol. Genet., 27(2): 242-249, 2018.

Brooks W.H.; Renaudineau, Y.; “Viral Impact in Autoimmune Diseases: Expanding the “X Chromosome–Nucleolus Nexus” Hypothesis”. Front. Immuno., 2: 82-9,2017.

Messoussi M.; Prieto-Fernández E.; Baeta M.; Núñez C.; Ammar-El Gaaied A.; Ben, de Pancorbo, M. et al.; " Genetic variation of 17 X-chromosome STR loci in Tunisian population of Nabeul". Int. J. Legal Med., 133(1): 85–88, 2019.

Morey C.; Avner, P.; "Genetics and epigenetics of the X chromosome”. Ann. N. Y. Acad. Sci.,1214(1): E18-E33, 2010.

Cotter D.J.; Brotman S.M.; Sayres M.A. W.; "Genetic diversity on the human X chromosome does not support a strict pseudoautosomal boundary". Genet., 203(1): 485-492, 2016.

Pandey R.S.; Wilson Sayres M.A.; Azad R. K.; "Detecting evolutionary strata on the human X chromosome in the absence of gametologous Y-linked sequences". Genome Bio. Evol., 5(10): 1863-1871, 2013.

Graves J.A.; Wakefield M.J.; Toder R; "The origin and evolution of the pseudoautosomal regions of human sex chromosomes". Hum. Mol. Genet., 13: 1991-6, 1998.

Bachtrog D.; "Y-chromosome evolution: emerging insights into processes of Ychromosome degeneration”. Nat. Rev. Genet., 14(2):113–124, 2013.

Ross, M.T.; Grafham, D.V.; Coffey, A.J.; Scherer, S.; McLay, K.; Muzny D.; Frankish, A.; "The DNA sequence of the human X chromosome". Nature, 434(7031):325, 2005.

Garcia, F.M.; Bessa, B.G.O.; Dos-Santos, E.V.W.; Pereira, J.D.P.; Alves, L.N.R.; Vianna, L.A; et al.; “Forensic Applications of Markers Present on the X Chromosome". Genes, 13(9): 1597, 2022.

Dumbovic, G.; Forcales, S.V.; Perucho, M.; "Emerging roles of macrosatellite repeats in genome organization and disease development". Epigenetics, 12(7): 515-526, 2017.

Mangs, A.H.; Morris, B.J.; “The Human Pseudoautosomal Region (PAR): Origin, Function and Future". Curr. Genomics, 8:129– 136, 2007.

Ting, J.C.; Roberson, E.D.O.; Currier D. G. and Pevsner, J.; "Locations and patterns of meiotic recombination in two-generation pedigrees". BMC Med. Genet., 10(1): 93-97, 2009.

Bachtrog, D.; “Y-chromosome evolution: emerging insights into processes of Ychromosome degeneration”. Nat. Rev. Genet, 14(2): 113–124, 2013.

Veerappa, A.M.; Padakannaya, P.; Ramachandra, N.B.; “Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the y- chromosome”. Funct. Integr. Genomics, 13(3): 285–293, 2013.

Flaquer, A.; Rappold, G.A.; Wienker, T.F.; Fischer, C.; “The human pseudoautosomal regions: a review for genetic epidemiologists’’. Eur. J. Hum. Genet., 16(7): 771-779, 2008.

Tillmar, A.O.; Kling, D.; Butler, J. M.; Parson, W.; Prinz, M.; Schneider, P.M. et al.; “Guidelines on the use of X-STRs in kinship analysis”. Forensic Sci. Int. Genet. Suppl. Ser., 2: 269–275, 2017.

Messoussi, M.; Prieto-Fernández, E.; Baeta, M.; Núñez, C.; Ammar, El-Gaaied, A. B.; de- Pancorbo, M.M. et al.; “Genetic variation of 17 X-chromosome STR loci in Tunisian population of Nabeul”. Int. J. Legal Med., 133(1): 85–88, 2019.

Chen, P.; Ren, H.; Liu, Z.; Zhao, J.; Chen, C.; Shi, Y.; “Genetic polymorphisms and mutation rates of 16 X-STRs in a Han Chinese population of Beijing and application examples in second-degree kinship cases". Int. J. Legal Med., 134(1): 163–168, 2020.

Rodrigues, E.M.R.; das-Neves Leite, F.P.; Hutz, M.H.; Palha, T.; De, J.B.F.; dos-Santos, Â.K.C.R.; dos-Santos, S.E.B..; “A multiplex PCR for 11 X chromosome STR markers and population data from a Brazilian Amazon Region”. Forensic Sci. Int. Genet., 2(2): 154–158, 2008.

He, G.; Li, Y.; Zou, X.; Zhang, Y.; Li, H.; Wang, M.; Wu, J.; "X-chromosomal STR-based genetic structure of Sichuan Tibetan minority ethnicity group and its relationships to various groups". Int. J. Legal Med., 132(2): 409-413, 2018.

Asamura, H.; Sakai, H.; Kobayashi, K., Ota, M.; Fukushima, H.; “MiniX-STR multiplex system population study in Japan and application to degraded DNA analysis”. Int. J. Legal Med., 120(3): 174-181, 2006.

Barbaro, A.; Cormaci, P.; “X-STR typing for an identification casework”. Int. Congr. Ser., 1288: 513-515, 2006.

Szibor, R.;" X-chromosomal markers: past, present and future". Forensic Sci. Int. Genet., 1(2) :93-99, 2007.

Israr, M.; Rafiq, S.; Shahid, A.A.; Hussain H.; and Rakha A.; “Scope of X-Chromosomal MiniSTRs: Current Developments". J. Forensic Res., 5(5): 241, 2014.

Szibor, R.; “ X-chromosomal markers: past, present and future”. Forensic Sci. Int. Genet., 1(2): 93–99, 2007.

Krawczak, M; “Kinship testing with X-chromosomal markers: mathematical and statistical issues”. Forensic Sci. Int. Genet., 1(2): 111-114, 2007.

Mehta, B.; Daniel, R.; Phillips, C.; Mc-Nevin, D.; “Forensically relevant SNaPshot®assays for human DNA SNP analysis: a review". Int. J. Legal Med., 131(1): 21–37, 2017.

Hatsch, D.; Keyser, C.; Hienne, R.; Bertrand, L.; “Resolving Paternity Relationships Using X‐Chromosome STRs and Bayesian Networks”. J. Forensic Sci., 52(4):895-897, 2007.

Elakkary, S.; Hoffmeister-Ulleric, S.; Schulze, C.; Seif, E.; Sheta, A.; Hering, S. et al.; " Genetic polymorphisms of twelve X- STRs of the investigator Argus X-12 kit and additional six X-STR centromere region loci in an Egyptian population sample". Forensic Sci. Int. Genet., 11: 26-30, 2014.

Szibor, R.; “.X-chromosomal markers: past, present and future”. Forensic Sci. Int. Genet., 1(2): 93–99, 2007.

Børsting, C.; Morling, N.; "Next generation sequencing and its applications in forensic genetics". Forensic Sci. Int. Genet., 18(5): 78–89, 2015.

Gomes, C.; Magalhães, M.; Alves, C.; Amorim, A.; Pinto, N.; Gusmão, L.; “Comparative evaluation of alternative batteries of genetic markers to complement autosomal STRs in kinship investigations: autosomal indels vs. X-chromosome STRs”. Int. J. Legal Med., 126(6): 917–921, 2012.

Steinberg, C.; Padfield, G.J.; Champagne, J.; Sanatani, S.; Angaran, P.; Andrade, J.G.; “Cardiac abnormalities in first-degree relatives of unexplained cardiac arrest victims: a report from the Cardiac Arrest Survivors with Preserved Ejection Fraction Registry”. Circ. Arrhythmia Electrophysiol., 9(9): 4274–4285, 2016.

Ziętkiewicz, E.; Witt, M.; Daca, P.; Zebracka-Gala, J.; Goniewicz, M.; Jarząb, B. et al.; “Current genetic methodologies in the identification of disaster victims and in forensic analysis”. J. Appl. Genetics., 53:41-60, 2012.

Alejandra, R.; Luis, D.; Cláudia, G.; “Relevance of Genetic Identification and Kinship Analysis in Human and Natural Catastrophes—A Review". Genealogy, 7(44): 1-14, 2023.

Cainé, L.; Carvalho, R.; Costa, S.; Pereira, M.F.; Pinheiro, M.F.; “Interest of X chromosome (Argus X-12 kit) in complex kinship analysis". Forensic Sci. Int. Genet., 3(1): e206-e207, 2011.

Aquino, J.; Peixe, C.; Silva, D.; Tavares, C.; de-Carvalho, E.F.; “A X- chromosome STR hexaplex as a powerful tool in deficiency paternity cases”. Forensic Sci. Int. Genet., 2(1): 45–46, 2009.

Ting, J.C.; Roberson, E.D.O.; Currier, D.G.; Pevsner, J.; “Locations and patterns of meiotic recombination in two-generation pedigrees”. BMC Med. Genomics, 10(1): 93-97, 2009.

Szibor, R.; Krawczak, M.; Hering, S.; Edelmann, J.;Kuhlisch, E.; Krause, D.; “Use of X-linked markers for forensic purposes”. Int. J. Legal Med., 117(2): 67–74,2003.

Liu, Q.-L.; Lu, D.-J.; Wu, W.-W.; Hao,, H.-L.; Chen, Y.-F.; Zhao, H.; “Genetic analysis of the 10 ChrX STRs loci in Chinese Han nationality from Guangdong province”. Mol. Biol. Rep., 38(8): 4879–4883, 2011.

Gattepaille, L.M.; Jakobsson, M.; “Combining markers into haplotypes can improve population structure inference”. Genetics, 190(1): 159–174, 2012.

Barbaro, A.; Phillips, C.; Fondevila, M.; Lareu, M.; Carracedo, Á.; “Genetic variability of the SNPforID 52-plex identification SNP panel in Italian population samples”. Forensic Sci. Int. Genet., 6(6): 185-186, 2012.

Manel, S.; Schwartz, M.K.; Luikart, G.; Taberlet, P.; “Landscape genetics: combining landscape ecology and population genetics”. Trends Ecol. Evol., 18(4):189–197, 2003.

Wang, J.; Santiago, E.; Caballero, A.; “Prediction and estimation of effective population size”. Heredity, 117:193-206, 2016.

Thompson, E.A.; “Identity by descent: variation in meiosis, across genomes, and in populations”. Genetics, 194(2): 301–326, 2013.

Xue, Y.; Chen, Y.; Ayub, Q.; Huang, N.; Ball, E.V.; Mort, M.; “Deleterious-and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing”. Am. J. Hum. Genet., 91(6) :1022– 1032, 2012.

Bodner, M.; Bastisch, I.; Butler, J.M.; Fimmers, R.; Gill, P.; Gusmão, L.; "Recommendations of the DNA Commission of the on quality control of autosomal Short Tande ISFG m Repeat allele frequency databasing (STRidER)". Forensic Sci. Int. Genet. Suppl. Ser., 24(8): 97–102, 2016.

Tillmar, A.O.; Kling, D.; Butler, J.M.; Parson, W.; Pri6nz, M.; Schneider, P.M. et al.; “Guidelines on the use of X-STRs in kinship analysis”. Forensic Sci. Int. Genet., 29(7): 269–275, 2017.

Avila, E.; Cavalheiro, C.P.; Felkl, A.B.; Graebin, P.; Kahmann, A.; Alho, C.S.; “Brazilian forensic casework analysis through MPS applications: Statistical weight-of-evidence and biological nature of criminal samples as an influence factor in quality metrics". Forensic Sci. Int., 303(8): 109–138, 2019.

Yang, X.; Zhang, X.; Zhu, J.; Chen, L.; Liu, C.; Feng, X. et al.; "Genetic analysis of 19 X chromosome STR loci for forensic purposes in four Chinese ethnic groups". Sci. Rep, 7(1): 1–11, 2017.

Troggio, M.; Malacarne, G.; Coppola, G.; Segala, C.; Cartwright, D. A.; Pindo, M.; "A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs”. Genetics, 176(4): 2637–2650, 2007.

Webster, T.H.; Sayres, M.A.W.; "Genomic signatures of sex-biased demography: progress and prospects”. Curr. Opin. Genet. Dev., 41(5): 62–71, 2016.

Downloads

Published

2024-03-15

Issue

Section

Articles

How to Cite

[1]
“Forensic Applications of Markers Present on the X Chromosome”, ANJS, vol. 27, no. 1, pp. 74–85, Mar. 2024, doi: 10.22401/xywxx552.

Most read articles by the same author(s)